To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The growth of modern science has been accompanied by the growth of professionalization. We can unquestionably speak of professional science since the nineteenth century, although historians dispute about where, when and how much. It is much more problematic and anachronistic to do so of the late seventeenth century, despite the familiar view that the period saw the origin of modern experimental science. This paper explores the broad implications of that problem.
The history of the Cavendish Laboratory is a fascinating subject to study, not just because this famous centre of experimental physics produced a large number of Nobel Laureates but also because it gives us an insight into the unique milieu of the Cambridge physics community. The evolution of the Cavendish Laboratory, however, was not as smooth as might be expected, and the prestige and reputation of its first directors – James Clerk Maxwell, Lord Rayleigh, Joseph John Thomson and Ernest Rutherford – did not automatically guarantee a rosy future. Like other British physics laboratories in the late nineteenth century, the Cavendish Laboratory was a new species to meet the pressure and demand from society. Since it propagated new values and modes of doing science, a struggle with old traditions could not be avoided, and the early history of the Cavendish Laboratory illustrates how the ‘old’ and ‘new’ values fought and negotiated each other in late Victorian Cambridge.
During high summer 1721, while rioters and bankrupts gathered outside Parliament, Robert Walpole's new ministry forced through a bill to clear up the wreckage left by the stock-market crash, the South Sea Bubble, and the visionary projects swept away when it burst. In early August the President of the Royal Society Isaac Newton, a major investor in South Sea stock, and the Society's projectors, learned of a new commercial scheme promising apparently automatic profits, a project for a perpetual motion. Their informants were a young Viennese courtier Joseph Emmanuel Fischer von Erlach, a contact of Desaguliers recently engaged in industrial espionage in northern England, and the Leiden physics professor Willem 'sGravesande, who had visited London five years earlier. They reported that they had been summoned to a remarkable series of demonstrations in the castle of Weissenstein, the seat of the Landgrave of Hesse-Kassel. In a carefully guarded room of the castle there was set up a hollow wooden wheel covered in oilcloth, about 12 feet in diameter and 18 inches thick on an axle 6 feet in length. Its designer, a Saxon engineer and clockmaker Johann Bessler, who travelled Germany under the name Orffyreus, had been in Kassel for four years, published schemes for perpetual motion and been appointed commercial councillor. The Landgrave, well-known as a patron of advanced engineering schemes, commissioned him to build a new machine and put it on show before expert witnesses (Figure 1).
Early in this century, only a few biologists accepted that natural selection was the chief cause of evolution, until the independent calculations of John Burdon Sanderson Haldane (1892–1964), Sewall Wright and R. A. Fisher demonstrated that ideal populations subject to Mendel's laws could behave as Darwin had said they would. Evolutionary theorist John Maynard Smith, a student of Haldane's, has raised the question of why Haldane, who was no naturalist, took up the subject of evolution, and he suggests that the answer may have to do with Haldane's lively interest in religion. In fact Maynard Smith's answer has much more evidence in its favour than he knew.