To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper I want to examine in some detail one eighteenth-century attempt to restructure the foundations of mechanics, that of Leonhard Euler. It is now generally recognized that the idea, due to Mach, that all that happened in the eighteenth century was the elaboration of a deductive and mathematical mechanics on the basis of Newton's Laws is misleading at best. Newton's Principia needed much more than a reformulation in analytic terms if it was to provide the basis for the comprehensive mechanics that was developed in the eighteenth century. Book II of the Principia, in particular, where the problem of the resistance offered to the motion of a finite body by a fluid medium was raised, was generally (and rightly) thought to be in large part mistaken and confused. There were also a number of areas crucial to the unification of mechanics which Newton did not deal with at all in the Principia: particularly the dynamics of rigid, flexible and elastic bodies, and the dynamics of several bodies with mutual interactions. Although a start had been made on some of these topics in the seventeenth century (notably by Galileo, Beeckman, Mersenne, Huygens, Pardies, Hooke, and Leibniz), it was only in the eighteenth century that they were subjected to detailed examination, and Euler's contribution to the development of these topics, and hence to the unification of mechanics, was immense.