To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Feeding trans-10, cis-12 CLA to lactating ewes reduces milk fat by down-regulating expression of enzymes involved in lipid synthesis in the mammary gland and increases adipose tissue lipogenesis. Acetyl-CoA carboxylase α (ACC-α) is a key regulated enzyme in de novo fatty acid synthesis and is decreased by CLA. In the ovine, the ACC-α gene is expressed from three tissue-specific promoters (PI, PII and PIII). This study evaluated promoter-specific ACC-α expression in mammary and adipose tissue of lactating cross-bred Lacaune/Texel ewes during milk fat depression induced by rumen-unprotected trans-10, cis-12 CLA supplement. In all, 12 ewes arranged in a completely randomized design were fed during early, mid and late lactation one of the following treatments for 14 days: Control (forage+0.9 kg of concentrate on a dry matter basis) and CLA (forage+0.9 kg of concentrate+27 g/day of CLA (29.9% trans-10, cis-12)). Mammary gland and adipose tissue biopsies were taken on day 14 for gene expression analysis by real-time PCR. Milk fat yield and concentration were reduced with CLA supplementation by 27%, 21% and 35% and 28%, 26% and 42% during early, mid and late lactation, respectively. Overall, our results suggest that trans-10, cis-12 CLA down-regulates mammary ACC-α gene expression by decreasing expression from PII and PIII in mammary gland and up-regulates adipose ACC-α gene expression by increasing expression from PI.
Scrapie is a naturally occurring transmissible spongiform encephalopathy in sheep and goat. It has been known for ~250 years and is characterised by the accumulation of an abnormal isoform of a host-encoded prion protein that leads to progressive neurodegeneration and death. Scrapie is recognised in two forms, classical and atypical scrapie. The susceptibility to both types of scrapie is influenced by polymorphisms of the prion protein gene (PRNP). Sheep susceptibility or resistance to classical scrapie is strongly regulated by the polymorphisms at codons 136, 154 and 171 of the PRNP. The genetic role in atypical scrapie in sheep has been defined by polymorphisms at codons 141, 154 and 171, which are associated with different degrees of risk in the occurrence of the ovine disease. Progress has been achieved in the prevention of scrapie in sheep due to efficient genetic breeding programmes based on eradication and control of the disease. In Europe, the success of these programmes has been verified by applying eradication and genetic selection plans. In general terms, the ovine selection plans aim to eliminate and reduce the susceptible allele and to enrich the resistant allele ARR. During outbreaks all susceptible animals are slaughtered, only ARR/ARR resistant rams and sheep and semi-resistant females are preserved. In the occurrence of scrapie positive goats a complete cull of the flock (stamping out) is performed with great economic loss and severe risk of extinction for the endangered breeds. The ability to select scrapie-resistant animals allows to define new breeding strategies aimed to boost genetic progress while reducing costs during scrapie outbreaks. Allelic variants of PRNP can be protective for caprine scrapie, and the knowledge of their distribution in goats has become very important. Over the past few years, the integration of genetic information on goat populations could be used to make selection decisions, commonly referred to as genetic selection. The objective of this review was to summarise the main findings of polymorphisms of the caprine prion protein (PrP) gene and to discuss the possible application of goat breeding schemes integrating genetic selection, with their relative advantages and limitations.
Management strategies for increasing ruminant legume consumption and mitigating methane emissions from tropical livestock production systems require further study. The aim of this work was to evaluate the herbage intake, animal performance and enteric methane emissions of cattle grazing dwarf elephant grass (DEG) (Pennisetum purpureum cv. BRS Kurumi) alone or DEG with peanut (Arachis pintoi cv. Amarillo). The experimental treatments were the following: DEG pastures receiving nitrogen fertilization (150 kg N/ha as ammonium nitrate) and DEG intercropped with peanut plus an adjacent area of peanut that was accessible to grazing animals for 5 h/day (from 0700 to 1200 h). The animals grazing legume pastures showed greater average daily gain and herbage intake, and shorter morning and total grazing times. Daily methane emissions were greater from the animals grazing legume pastures, whereas methane emissions per unit of herbage intake did not differ between treatments. Allowing animals access to an exclusive area of legumes in a tropical grass-pasture-based system can improve animal performance without increasing methane production per kg of dry matter intake.
Energy reserve, estimated as body condition score (BCS), is the major determinant of the re-initiation of ovarian activity in postpartum cows. Leptin, IGF-I and insulin are positively related to BCS and are putative mediators between BCS and reproductive function. However, when BCS and body composition dissociates, concentrations of these metabolic hormones are altered. We hypothesized that increasing lean muscle tissue, but not fat tissue, would diminish the reproductive response to oestrus induction treatments. Thirty lactating beef cows with BCS of 3.10±1.21 and 75.94±12 days postpartum were divided in two groups. Control cows (n=15) were supplemented with 10.20 kg of concentrate daily for 60 days. Treated cows (n=15) were supplemented equally, and received a β-adrenergic receptor agonist (β-AA; 0.15 mg/kg BW) to achieve accretion of lean tissue mass and not fat tissue mass. Twelve days after ending concentrate supplementation/β-AA treatment, cows received a progestin implant to induce oestrus. Cows displaying oestrus were inseminated during the following 60 days, and maintained with a fertile bull for a further 21 days. Cows in both groups gained weight during the supplementation period (Daily weight gain: Control=0.75 kg v. β-AA=0.89 kg). Cows treated with β-AA had a larger increase in BCS (i.e. change in BCS: control=1 point (score 4.13) v. β-AA=2 points (score 5.06; P<0.05), as a result of muscle accretion (i.e. change in muscle depth: control 0.21 cm v. β-AA 0.97 cm; P<0.05) but not adipose tissue (i.e. change in back fat depth; control 0.13 cm v. β-AA −0.06 cm; P<0.05). The changes in body composition in β-AA cows were associated with a reduction in serum concentrations of IGF-I (25.4%) and leptin (27.9%), without observed changes in insulin. Ovulation and pregnancy to 1st service (P>0.05) did not differ between groups. However, the number of cows displaying oestrus (control 13/15 v. β-AA 8/15; P<0.05) and the percentage cycling (control 6/8 v. β-AA 3/10; P=0.07) after progestin treatment and the pregnancy percentage at the end of the breeding period (control 13/15 v. β-AA 8/15; P<0.05) were lower in β-AA than control cows. In summary, the increase BCS through muscle tissue accretion, but not through fat tissue accretion, resulted in a lower response to oestrus induction, lower percentage of cycling animals and lower pregnancy percentage after progestin treatment; which was associated with a decrease in serum concentrations of leptin and IGF-I.
The present study investigated the effects of dietary conjugated linoleic acid (CLA) on the cellular immune response of piglets after cyclosporin A (CsA) treatment. The experimental study had a 2×2 factorial design, and the main factors consisted of diets (0% or 2% CLA) and immunosuppression treatments (CsA or saline injection). CsA injection significantly increased feed : gain (F : G) of piglets (P<0.05); however, dietary CLA significantly decreased F : G of piglets (P<0.05). Dietary CLA partly ameliorated the deterioration of the feed conversion rate caused by CsA treatment (P<0.01). CsA treatment significantly decreased the percentages of CD4+ and CD8+ T lymphocytes in the thymus (P<0.01). Dietary CLA increased the percentages of CD4+ CD8+ double-positive and CD8+ single-positive T lymphocytes in the thymus (P<0.05), and had the trend to inhibit the decrease of CD4+ T lymphocytes in the thymus after CsA injection (P=0.07). CsA treatment significantly depleted the peripheral blood CD3+, CD4+ and CD8+ T lymphocytes (P<0.01). Dietary CLA significantly increased the number of peripheral blood CD8+ T lymphocytes and interleukin-2 (IL-2) production (P<0.05), and inhibited the decreases of peripheral blood CD3+, CD4+ and CD8+ T lymphocytes counts (P<0.01) as well as IL-2 production (P<0.05) after CsA treatment. Dietary CLA partly rescued the decrease of lymphocyte proliferation after CsA injection (P<0.05). In summary, dietary CLA effectively ameliorated CsA-induced cellular immunosuppression in piglets.
The objective of the present study was to investigate the intestinal development of newborn intrauterine growth-restricted (IUGR) piglets subjected to normal nutrient intake (NNI) or restricted nutrient intake (RNI). Newborn normal birth weight (NBW) and IUGR piglets were allotted to NNI or RNI levels for 4 weeks from day 8 postnatal. IUGR piglets receiving NNI had similar growth performance compared with that of NBW piglets. Small intestine length and villous height were greater in IUGR piglets fed the NNI than that of piglets fed the RNI. Lactase activity was increased in piglets fed the NNI compared with piglets fed the RNI. Absorptive function, represented by active glucose transport by the Ussing chamber method and messenger RNA (mRNA) expressions of two main intestinal glucose transporters, Na+-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), were greater in IUGR piglets fed the NNI compared with piglets fed the RNI regimen. The apoptotic process, characterized by caspase-3 activity (a sign of activated apoptotic cells) and mRNA expressions of p53 (pro-apoptotic), bcl-2-like protein 4 (Bax) (pro-apoptotic) and B-cell lymphoma-2 (Bcl-2) (anti-apoptotic), were improved in IUGR piglets fed the NNI regimen. To test the hypothesis that improvements in intestinal development of IUGR piglets fed NNI might be mediated through circulating glucagon-like peptide-2 (GLP-2), GLP-2 was injected subcutaneously to IUGR piglets fed the RNI from day 8 to day 15 postnatal. Although the intestinal development of IUGR piglets fed the RNI regimen was suppressed compared with those fed the NNI regimen, an exogenous injection of GLP-2 was able to bring intestinal development to similar levels as NNI-fed IUGR piglets. Collectively, our results demonstrate that IUGR neonates that have NNI levels could improve intestinal function via the regulation of GLP-2.
Organic agriculture is developing worldwide, and organic rabbit production has developed within this context. It entails raising rabbits in moving cages or paddocks, which enables them to graze grasslands. As organic farmers currently lack basic technical information, the objective of this article is to characterize herbage intake, feed intake and the growth rate of rabbits raised on grasslands in different environmental and management contexts (weather conditions, grassland type and complete feed supplementation). Three experiments were performed with moving cages at an experimental station. From weaning, rabbits grazed a natural grassland, a tall fescue grassland and a sainfoin grassland in experiments 1, 2 and 3, respectively. Rabbit diets were supplemented with a complete pelleted feed limited to 69 g dry matter (DM)/rabbit per day in experiment 1 and 52 g DM/rabbit per day in experiments 2 and 3. Herbage allowance and fiber, DM and protein contents, as well as rabbit intake and live weight, were measured weekly. Mean herbage DM intake per rabbit per day differed significantly (P<0.001) between experiments. It was highest in experiment 1 (78.5 g DM/day) and was 43.9 and 51.2 g DM/day in experiments 2 and 3, respectively. Herbage allowance was the most significant determinant of herbage DM intake during grazing, followed by rabbit metabolic weight (live weight0.75) and herbage protein and fiber contents. Across experiments, a 10 g DM increase in herbage allowance and a 100 g increase in rabbit metabolic weight corresponded to a mean increase of 6.8 and 9.6 g of herbage DM intake, respectively. When including complete feed, daily mean DM intakes differed significantly among experiments (P<0.001), ranging from 96.1 g DM/rabbit per day in experiment 2 to 163.6 g DM/rabbit per day in experiment 1. Metabolic weight of rabbits raised on grasslands increased linearly over time in all three experiments, yielding daily mean growth rates of 26.2, 19.2 and 28.5 g/day in experiments 1, 2 and 3, respectively. The highest growth rate was obtained on the sainfoin grassland despite lower concentrate supplementation. Thus, it seems possible to reduce complete feed supplementation without reducing animal performance. This possibility requires improving our knowledge about organic rabbit production systems and especially grazing and animal health management.
Exposure of laying hens to chronic heat stress results in loss of egg production. It should be possible to improve hen resilience to chronic heat stress by genetic selection but measuring their sensitivity through internal temperature is time consuming and is not very precise. In this study we used infrared thermography to measure the hen’s capacity to dissipate heat, in a commercial line of laying hens subjected to cycles of neutral (N, 19.6°C) or high (H, 28.4°C) ambient temperatures. Mean body temperatures (BT) were estimated from 9355 infrared images of wing, comb and shank taken from 1200 hens. Genetic parameters were estimated separately for N and H temperatures. Correlations between BT and plumage condition were also investigated. Wing temperature had low heritability (0.00 to 0.09), consistent with the fact that wing temperature mainly reflects the environmental temperature and is not a zone of heat dissipation. The heritability of comb temperature was higher, from 0.15 to 0.19 in N and H conditions, respectively. Finally, the shank temperature provided the highest heritability estimates, with values of 0.20 to 0.22 in H and N conditions, respectively. Taken together, these results show that heat dissipation is partly under genetic control. Interestingly, the genetic correlation between plumage condition and shank and comb temperatures indicated that birds with poor condition plumage also had the possibility to dissipate heat through featherless areas. Genetic correlations of temperature measurements with egg quality showed that temperatures were correlated with egg width and weight, yolk brightness and yellowness and Haugh units only under H conditions. In contrast, shell colour was correlated with leg temperature only at thermo-neutrality.
Plant flavonoids are generally regarded as natural replacers of synthetic growth promoters in poultry production. This study investigated the immunomodulatory effects of plant flavonoids, such as genistein and hesperidin, in lipopolysaccharide (LPS)-challenged broilers. A total of 700 21-day-old commercial Arbor Acres broiler chicks were randomly assigned into six treatment groups, each having six pens of 20 chicks/pen. Chicks were fed a basal diet without any additive (control, CON), 5 mg genistein/kg feed (G5), 20 mg hesperidin/kg (H20), or a basal diet with a combination of genistein and hesperidin (1 : 4) with doses of 5 mg/kg feed (GH5), 10 mg/kg (GH10) and 20 mg/kg (GH20) for 6 weeks. Half of the birds from each treatment were separated, and either challenged with 0·9% sodium chloride solution or Escherichia coli LPS (250 μg/kg BW) on days 16, 18 and 20. The results showed that both genistein and hesperidin improved (P<0.01) the plasma antioxidant status of growing broilers, by increasing total antioxidant capacity (TAOC), superoxide dismutase (SOD) activity and decreasing malondialdehyde production. LPS challenge further increased (P<0.05) TAOC and SOD levels. Regardless of LPS challenge, both genistein and hesperidin improved the humoral and mucosal immunity by increasing the intestinal intraepithelial lymphocyte numbers (P<0.01), as well as anti-Newcastle disease and anti-avian influenza antibody titers (P<0.05). Supplementation of both the plant flavonoids generally increased (P<0.05) the immune organs indices (spleen, thymus and bursa). Thus, supplementation of basal diet of broiler chicks, either with genistein or hesperidin, improved immune and antioxidant status of growing broilers. In addition, combined supplementation of both the flavonoids showed further improvement than individual compounds.
Boar taint is a quality defect in meat, related to accumulation of skatole and androstenone in male pigs. The levels of skatole and its main metabolites in plasma and urine samples were measured with a validated liquid chromatography-MS method and related to activity of hepatic cytochrome P450 (CYP450) in order to identify ‘fast metabolizing’ pigs. Urine (n=46), blood (n=12), liver (n=25) and adipose tissue (n=46) were sampled from a total of 46 entire male pigs. Skatole levels in fat were negatively correlated to CYP2E1 activity and positively to 3-hydroxy-3-methyloxindole (HMOI), indole-3-carboxylic acid (ICA) and 2-aminoacetophenone in urine. HMOI and ICA levels in urine were the best predictors of high skatole levels in fat. In summary, the present study provided further evidence for the key role of CYP2E1 in skatole metabolism and suggested that measurement of HMOI and/or ICA in urine might provide information about skatole levels in live pigs.
Methods to reduce castration-related pain in piglets are still issues of concern and interest for authorities and producers. Our objectives were to estimate the effectiveness of two protocols of local anesthesia (lidocaine and the combination of lidocaine+bupivacaine) as well as the use of meloxicam as a postoperative analgesic in alleviating castration-related pain, measured by acute physiological responses. Eight groups (15 piglets/group) were included in the study: (1) castration without anesthesia or analgesia, without meloxicam (TRAD WITHOUT), (2) castration without anesthesia or analgesia, but with meloxicam (TRAD WITH), (3) handling without meloxicam (SHAM WITHOUT), (4) handling with meloxicam (SHAM WITH), (5) castration after local anesthesia with lidocaine but without meloxicam (LIDO WITHOUT), (6) castration after local anesthesia with lidocaine and meloxicam (LIDO WITH), (7) castration after local anesthesia with lidocaine+bupivacaine without meloxicam (LIDO+BUPI WITHOUT), (8) castration after local anesthesia with lidocaine+bupivacaine and meloxicam (LIDO+BUPI WITH). Acute physiological responses measured included skin surface temperature and serum glucose and cortisol concentrations. On days 4 and 11 post-castration BW was recorded and average daily gain was calculated over this period. Furthermore, piglet mortality was recorded over the 11-day post-castration period. Administration of local anesthetic or meloxicam did not prevent the decrease in skin surface temperature associated with castration. Lidocaine reduced the increase in glucose concentration associated with castration. For castrated pigs, the joint use of lidocaine and meloxicam caused a significant decrease in cortisol concentration; the combination of intratesticular lidocaine and bupivacaine did not seem to be more effective than lidocaine alone. No effect of treatments on mortality and growth were detected.
In pigs, many production traits are known to vary among breeds or lines. These traits can be considered end phenotypes or external traits as they are the final results of complex biological interactions and processes whose fine biological mechanisms are still largely unknown. This study was designed to compare plasma and serum metabolomic profiles between animals of two heavy pig breeds (12 Italian Large White and 12 Italian Duroc), testing indirectly the hypothesis that different genetic backgrounds might be the determining factors of differences observed on the level of metabolites in the analyzed biofluids between breeds. We used a targeted metabolomic approach based on mass spectrometric detection of about 180 metabolites and applied a statistical validation pipeline to identify differences in the metabolomic profiles of the two heavy pig breeds. Blood samples were collected after jugulation at the slaughterhouse and prepared for metabolomics analysis that was carried out using the Biocrates AbsoluteIDQ p180 Kit, covering five different biochemical classes: glycerophospholipids, amino acids, biogenic amines, hexoses and acylcarnitines. A statistical pipeline that included the selection of the most relevant metabolites differentiating the two breeds by sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was coupled with a stability test and significance test determined with leave one out and permutation procedures. sPLS-DA plots clearly separated the pigs of the two investigated breeds. A few metabolites (a total of five metabolites considering the two biofluids) involved in key metabolic pathways largely contributed to these differences between breeds. In particular, a higher level of the sphingomyelins SM (OH) C14:1 (both in plasma and serum), SM (OH) C16:1 (in serum) and SM C16:0 (in serum) were observed in Italian Duroc than in Italian Large White pigs and the inverse was for the biogenic amine kynurenine (in plasma). The level of another biogenic amine (acetylornithine) was higher in Italian Large White than in Italian Duroc pigs in both analysed biofluids. These results provided biomarkers that could be important to understand the biological differences between these two heavy pig breeds. In particular, according to the functional role played by sphingomyelins in obesity-induced inflammatory responses, it could be possible to speculate that a higher level of sphingomyelins in Italian Duroc might be related to the higher interrmuscular fat deposition of this breed compared with the Italian Large White. Additional studies will be needed to evaluate the relevance of these biomarkers for practical applications in pig breeding and nutrition.
Automatic milking systems (AMS), one of the earliest precision livestock farming developments, have revolutionized dairy farming around the world. While robots control the milking process, there have also been numerous changes to how the whole farm system is managed. Milking is no longer performed in defined sessions; rather, the cow can now choose when to be milked in AMS, allowing milking to be distributed throughout a 24 h period. Despite this ability, there has been little attention given to milking robot utilization across 24 h. In order to formulate relevant research questions and improve farm AMS management there is a need to determine the current knowledge gaps regarding the distribution of robot utilization. Feed, animal and management factors and their interplay on levels of milking robot utilization across 24 h for both indoor and pasture-based systems are here reviewed. The impact of the timing, type and quantity of feed offered and their interaction with the distance of feed from the parlour; herd social dynamics, climate and various other management factors on robot utilization through 24 h are provided. This novel review draws together both the opportunities and challenges that exist for farm management to use these factors to improved system efficiency and those that exist for further research.
It is imperative to evaluate precise nutrient requirements of animals in order to optimize productivity and minimize feed cost and nutrient excretions. The current non-phytate phosphorus (NPP) recommendation for broilers is based on the papers published 30 years ago. However, today’s commercial birds are quite different from those before 30 years. Therefore, the present experiment was conducted with growing male broiler chickens to evaluate an optimal dietary NPP level of broiler chickens fed a conventional corn–soybean meal diet from 4 to 6 weeks of age. The 1-day-old chicks were fed corn–soybean meal diet containing 0.39% NPP from 1 to 3 weeks of age. At 22 days of age, 360 birds were selected and randomly allotted by BW to one of 10 dietary treatments with six replicate cages of six birds per cage for each treatment. Birds were fed the P-unsupplemented corn–soybean meal basal diet and the basal diet supplemented with inorganic P as CaHPO4·H2O ranging from 0.00% to 0.45% with 0.05% increment from 4 to 6 weeks of age. The dietary NPP levels were 0.09%, 0.14%, 0.20%, 0.24%, 0.30%, 0.34%, 0.38%, 0.45%, 0.49% and 0.54%, respectively, and the dietary Ca level was fixed at 0.90% for all treatments. The results showed that average daily gain, serum inorganic P concentration, tibia bone strength, tibia ash percentage and P percentage, tibia bone mineral content (BMC) and density (BMD), middle toe ash percentage and P percentage, middle toe BMC, total body BMC and BMD were affected (P<0.0001) by dietary NPP level, and increased linearly (P<0.0001) and quadratically (P<0.003) as dietary NPP levels increased. Optimal dietary NPP levels estimated based on fitted broken-line models (P<0.0001) of the above indices are 0.21%, 0.29%, 0.29%, 0.29%, 0.29%, 0.31%, 0.29%, 0.30%, 0.27%, 0.29% and 0.28%, respectively. It is suggested that the total body BMC and BMD, and middle toe ash P and BMC might be new, sensitive and non-invasive criteria to evaluate the dietary NPP requirements of broilers. The optimal dietary NPP level would be 0.31% for broiler chickens fed a conventional corn–soybean meal diet from 4 to 6 weeks of age.
The primary objective of this study was to investigate the effect of dietary fiber on methanogenic diversity and community composition in the hindgut of indigenous Chinese Lantang gilts to explain the unexpected findings reported earlier that Lantang gilts fed low-fiber diet (LFD) produced more methane than those fed high-fiber diet (HFD). In total, 12 Lantang gilts (58.7±0.37 kg) were randomly divided into two dietary groups (six replicates (pigs) per group) and fed either LFD (NDF=201.46 g/kg) or HFD (NDF=329.70 g/kg). Wheat bran was the main source of fiber for the LFD, whereas ground rice hull (mixture of rice hull and rice bran) was used for the HFD. Results showed that the methanogens in the hindgut of Lantang gilts belonged to four known species (Methanobrevibacter ruminantium, Methanobrevibacter wolinii, Methanosphaera stadtmanae and Methanobrevibacter smithii), with about 89% of the methanogens belonging to the genus Methanobrevibacter. The 16S ribosomal RNA (rRNA) gene copies of Methanobrevibacter were more than three times higher (P<0.05) for gilts fed LFD (3.31×109 copies/g dry matter (DM)) than gilts fed HFD (1.02×109 copies/g DM). No difference (P>0.05) was observed in 16S rRNA gene copies of Fibrobacter succinogenes between the two dietary groups, and 18S rRNA gene copies of anaerobic fungi in gilts fed LFD were lower than (P<0.05) those fed HFD. To better explain the effect of different fiber source on the methanogen community, a follow-up in vitro fermentation using a factorial design comprised of two inocula (prepared from hindgut content of gilts fed two diets differing in their dietary fiber)×four substrates (LFD, HFD, wheat bran, ground rice hull) was conducted. Results of the in vitro fermentation confirmed that the predominant methanogens belonged to the genus of Methanobrevibacter, and about 23% methanogens was found to be distantly related (90%) to Thermogymnomonas acidicola. In vitro fermentation also seems to suggest that fiber source did change the methanogens community. Although the density of Methanobrevibacter species was positively correlated with CH4 production in both in vivo (P<0.01, r=0.737) and in vitro trials (P<0.05, r=0.854), which could partly explain the higher methane production from gilts fed LFD compared with those in the HFD group. Further investigation is needed to explain how the rice hull affected the methanogens and inhibited CH4 emission from gilts fed HFD.
Bone metabolism fluctuates throughout the reproductive cycle of sows to enable foetal growth and milk production. Although increased bone mineralisation is conceivable in sows during reproduction, a study of mineralisation in function of parity has not been performed. This study evaluated the fluctuations of markers for bone metabolism in primiparous and multiparous sows throughout a reproductive cycle. The experiment included ten multiparous and five primiparous commercial hybrid sows from one herd. The sows were monitored for one reproductive cycle and fed according to commercial dietary standards. Blood samples were taken in the morning before feeding at fixed time intervals before (day -5) and during gestation (insemination (day 0), 21, 42, 63, 84), around parturition (day 108, 112, parturition (115), 118), and during lactation (day 122, 129, 143). Serum osteocalcin (OC) concentration increased in early and mid-gestation (P=0.002) and decreased at the end of gestation (P=0.001), whereas crosslaps (CTX) concentration decreased during early and mid-gestation (P=0.002) and increased towards the end of gestation (P=0.001). Towards the end of lactation serum levels of both markers increased (P=0.007 and 0.013, respectively). For hydroxyproline (HYP) no significant fluctuation in function of the reproductive cycle was detected. Matrix metalloproteinase 2 (MMP2) concentration increased towards parturition for both primiparous and multiparous sows (P=0.001), whereas during lactation no significant fluctuations in function of the reproductive cycle were found. A parity effect was found for OC and CTX (P<0.010), but not for the other markers. These results demonstrate that bone metabolism differed between primiparous and multiparous sows, although in both groups a similar fluctuation throughout the reproductive cycle was observed.
Flavonoid supplementation is likely to be beneficial in improving rumen fermentation and in reducing the incidence of rumen acidosis and bloat. Flavonoids are also said to increase the metabolic performance during the peripartum period. Ruminants are constantly exposed to flavonoids present in feed. However, it is not clear if these phytochemicals can affect the activity of the gut smooth muscle. Therefore, the aim of the study was to verify the effect of three flavonoids on bovine isolated abomasum smooth muscle. The study was carried out on bovine isolated circular and longitudinal abomasal smooth muscle specimens. All experiments were conducted under isometric conditions. The effect of apigenin, luteolin and quercetin (0.001 to 100 µM) was evaluated on acetylcholine-precontracted preparations. The effect of multiple, but not cumulative, treatment and single treatment with each flavonoid on abomasum strips was compared. Apigenin (0.1 to 100 µM) dose-dependently showed myorelaxation effects. Luteolin and quercetin applied in low doses increased the force of the ACh-evoked reaction. However, if used in high doses in experiments testing a wide range of concentrations, their contractile effect either declined (luteolin) or was replaced by an antispasmodic effect (quercetin). Surprisingly, the reaction induced by flavonoids after repeated exposure to the same phytochemical was not reproducible in experiments testing only single exposure of abomasum strips to the same flavonoid used in a high concentration. Taking into account the physicochemical properties of flavonoids, this data suggests the ability of flavonoids to interfere with cell membranes and, subsequently, to modify their responsiveness. Assuming ruminant supplementation with luteolin or quercetin or their presence in daily pasture, a reduction of the likelihood of abomasum dysmotility should be expected.
Nutrients are essential for the health and survival of human beings and animals. Also, they play a major role in enhancing reproductive efficiency. The aim of the current study was to investigate the effects of sodium butyrate (SB) on reproductive performance and colostrum composition in gilts. A total of 40 Large White×Landrace replacement gilts (at the age of 160 to 175 days) were fed either a standard diet (control group, n=20) or standard diet top dressed with encapsulated SB at the level of 500 mg/kg (SB group, n=20) from 1 month before mating to 7 days after farrowing. The rate of gilts regular return to estrus after insemination was lower in SB group than the control group. The total number of piglets born (P=0.179) and the litter weight at birth (P=0.063) did not differ between the two treatment groups. However, the mean BW at day 7 tended to be greater in SB group (P=0.051) and average daily gain of piglets was greater (P=0.011) compared with control group. Colostrum samples were collected at parturition and the concentrations of total protein (P=0.197), cholesterol (P=0.161) and lactose (P=0.923) were not influenced by SB supplementation. However, compared with control gilts, colostrum from SB-treated gilts contained lower triglyceride (P=0.050). Moreover, colostrum concentrations of prolactin (P=0.005) and leptin (P=0.006) were significantly lower in SB group. No significant differences were noted for the colostral concentrations of cortisol (P=0.899), thyroxine (P=0.891) or triiodothyronine (P=0.194). The concentration of lipopolysaccharide in colostrum was not influenced by SB supplementation (P=0.972). However, colostrum from SB-treated gilts had significantly lower tumor necrosis factor α (TNFα) (P=0.030) and higher immunoglobulin A (IgA) (P=0.042). Collectively, SB supplementation could reduce the rate of gilts return to estrus, alter the composition of colostrum and enhance the growth rate of piglets. Moreover, SB could alter the immune function of newborn piglets through decreased production of TNFα and increased IgA concentration in colostrum.