To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let graph $G=(V,E)$ and integer $b\geq 1$ be given. A set $S\subseteq V$ is said to be $b$-independent if $u,v\in S$ implies $d_G(u,v)>b$, where $d_G(u,v)$ is the shortest distance between $u$ and $v$ in $G$. The $b$-independence number $\a_b(G)$ is the size of the largest $b$-independent subset of $G$. When $b=1$ this reduces to the standard definition of independence number.
We study this parameter in relation to the random graph $G_{n,p},\,p=d/n$, in particular, when $d$ is a large constant. We show that w.h.p. if $d\geq d_{\epsilon, b}$, $$ \left| \alpha_b(G_{n,p}) - \frac{2bn}{d^b} \biggl(\log{d} - \frac{\log{\log{d}}}{b} - \frac{\log{2b}}{b} + \frac{1}{b}\biggr)\right| \leq \frac{\epsilon n}{d^b}.$$
Improving an old result of Clarkson, Edelsbrunner, Guibas, Sharir and Welzl, we show that the number of distinct distances determined by a set $P$ of $n$ points in three-dimensional space is $\Omega(n^{77/141-\varepsilon})=\Omega(n^{0.546})$, for any $\varepsilon>0$. Moreover, there always exists a point $p\in P$ from which there are at least so many distinct distances to the remaining elements of $P$. The same result holds for points on the three-dimensional sphere. As a consequence, we obtain analogous results in higher dimensions.
We show that for every $\varepsilon\,{>}\,0$ there exists an $r_0\,{=}\,r_0(\varepsilon)$ such that, for all integers $r\,{\ge}\, r_0$, every graph of average degree at least $r+\varepsilon$ and girth at least 1000 contains a subdivision of $K_{r+2}$. Combined with a result of Mader this implies that, for every $\varepsilon\,{>}\,0$, there exists an $f(\varepsilon)$ such that, for all $r\,{\ge}\, 2$, every graph of average degree at least $r+\varepsilon$ and girth at least $f(\varepsilon)$ contains a subdivision of $K_{r+2}$. We also prove a more general result concerning subdivisions of arbitrary graphs.
Using representation theory, we obtain a necessary and sufficient condition for a discrete-time Markov chain on a finite state space $E$ to be representable as $$\Psi_n \Psi_{n-1} \cdots \Psi_1 z,\quad n \geq 0,$$ for any $z \in E$, where the $\Psi_i$ are independent, identically distributed random permutations taking values in some given transitive group of permutations on $E$. The condition is particularly simple when the group is 2-transitive on $E$. We also work out the explicit form of our condition for the dihedral group of symmetries of a regular polygon.
What simple condition on a graph $G$ will ensure that $G\,{\succ}\,K_t$? As usual, $G\,{\succ}\,K_t$ means that $K_t$ is a minor of the graph $G$ (in other words, $G$ has vertex disjoint connected subgraphs $W_1,\ldots,W_t$ and at least one edge between $W_i$ and $W_j$, $1\,{\le}\, i<j\,{\le}\, t$).
We compute the fat-shattering function and the level fat-shattering function for important classes of affine functions. We observe that the level fat-shattering function and the fat-shattering function are identical for these classes. In addition we observe that the notion that adding the constant term to linear functions increases the dimension by at most 1 is incorrect for fat-shattering and level fat-shattering.
In this paper we prove several point selection theorems concerning objects ‘spanned’ by a finite set of points. For example, we show that for any set $P$ of $n$ points in $\R^2$ and any set $C$ of $m \,{\geq}\, 4n$ distinct pseudo-circles, each passing through a distinct pair of points of $P$, there is a point in $P$ that is covered by (i.e., lies in the interior of) $\Omega(m^2/n^2)$ pseudo-circles of $C$. Similar problems involving point sets in higher dimensions are also studied.
Most of our bounds are asymptotically tight, and they improve and generalize results of Chazelle, Edelsbrunner, Guibas, Hershberger, Seidel and Sharir [8], where weaker bounds for some of these cases were obtained.
We give results on the strong connectivity for spaces of sparse random digraphs specified by degree sequence. A full characterization is provided, in probability, of the fan-in and fan-out of all vertices including the number of vertices with small ($o(n)$) and large ($cn$) fan-in or fan-out. We also give the size of the giant strongly connected component, if any, and the structure of the bow-tie digraph induced by the vertices with large fan-in or fan-out. Our results follow a direct analogy of the extinction probabilities of classical branching processes.
We look at a model of random graphs suggested by Gilbert: given an integer $n$ and $\delta > 0$, scatter $n$ vertices independently and uniformly on a metric space, and then add edges connecting pairs of vertices of distance less than $\delta$ apart.
We consider the asymptotics when the metric space is the interval [0, 1], and $\delta = \delta(n)$ is a function of $n$, for $n \to \infty$. We prove that every upwards closed property of (ordered) graphs has at least a weak threshold in this model on this metric space. (But we do find a metric space on which some upwards closed properties do not even have weak thresholds in this model.) We also prove that every upwards closed property with a threshold much above connectivity's threshold has a strong threshold. (But we also find a sequence of upwards closed properties with lower thresholds that are strictly weak.)