To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
How ‘tightly’ can we pack a given number of $r$-sets of an $n$-set? To be a little more precise, let $X=[n]=\{ 1,\ldots,n \}$, and let $X^r=\{ A\subset X : |A|=r \}$. For a set system $\mathcal{A}\subset X^r $, the neighbourhood of $\mathcal{A}$ is $N(\mathcal{A})=\{ B \in X^r: |B \bigtriangleup A|\le 2 \hbox{ for some }A \in \mathcal{A} \}$. In other words, $N(\mathcal{A})$ consists of those $r$-sets that are either in $\mathcal{A}$ or are ‘adjacent’ to it, in the sense that they are at minimal Hamming distance (i.e., distance 2) from some point of it. Given $|\mathcal{A}|$, how small can $|N(\mathcal{A})|$ be?
Sampling formulas describe probability laws of exchangeable combinatorial structures like partitions and compositions. We give a brief account of two known parametric families of sampling formulas for compositions and add a new family to the list.
We give a quantitative proof that, for sufficiently large $N$, every subset of $[N]^2$ of size at least $\delta N^2$ contains a square, i.e., four points with coordinates $\{(a,b),(a+d,b),(a,b+d),(a+d,b+d)\}$.
Baranyai's partition theorem states that the edges of the complete $r$-graph on $n$ vertices can be partitioned into $1$-factors provided that $r$ divides $n$. Fon-der-Flaass has conjectured that for $r=3$ such a partitioning exists with the property that any two $1$-factors are ‘far apart’ in some natural sense.
Our aim in this note is to prove that the Fon-der-Flaass conjecture is not always true: it fails for $n=12$. Our methods are based on some new ‘auxiliary’ hypergraphs.
Given a set $L$ of $n$ lines in ${\mathbb R}^3$, joints are points in ${\mathbb R}^3$ that are incident to at least three non-coplanar lines in $L$. We show that there are at most $O(n^{5/3})$ incidences between $L$ and the set of its joints.
This result leads to related questions about incidences between $L$ and a set $P$ of $m$ points in ${\mathbb R}^3$. First, we associate with every point $p \in P$ the minimum number of planes it takes to cover all lines incident to $p$. Then the sum of these numbers is at most \[ O\big(m^{4/7}n^{5/7}+m+n\big).\] Second, if each line forms a fixed given non-zero angle with the $xy$-plane – we say the lines are equally inclined – then the number of (real) incidences is at most \[ O\big(\min\big\{m^{3/4}n^{1/2}\kappa(m),\ m^{4/7}n^{5/7}\big\} + m + n\big) , \] where $\kappa(m) \,{=}\, (\log m)^{O(\alpha^2(m))}$, and $\alpha(m)$ is the slowly growing inverse Ackermann function. These bounds are smaller than the tight Szemerédi–Trotter bound for point–line incidences in $\reals^2$, unless both bounds are linear. They are the first results of this type on incidences between points and $1$-dimensional objects in $\reals^3$. This research was stimulated by a question raised by G. Elekes.
I show that the zeros of the chromatic polynomials $P_G(q)$ for the generalized theta graphs $\Theta^{(s,p)}$ are, taken together, dense in the whole complex plane with the possible exception of the disc $|q-1| < 1$. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) $Z_G(q,v)$ outside the disc $|q+v| < |v|$. An immediate corollary is that the chromatic roots of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha–Kahane–Weiss theorem on the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof.
Bollobás and Riordan introduce a Tutte polynomial for coloured graphs and matroids in [3]. We observe that this polynomial has an expansion as a sum indexed by the subsets of the ground-set of a coloured matroid, generalizing the subset expansion of the Tutte polynomial. We also discuss similar expansions of other contraction–deletion invariants of graphs and matroids.
It is shown that the hard-core model on ${{\mathbb Z}}^d$ exhibits a phase transition at activities above some function $\lambda(d)$ which tends to zero as $d\rightarrow \infty$. More precisely, consider the usual nearest neighbour graph on ${{\mathbb Z}}^d$, and write ${\cal E}$ and ${\cal O}$ for the sets of even and odd vertices (defined in the obvious way). Set $${\cal G}L_M={\cal G}L_M^d =\{z\in{{\mathbb Z}}^d:\|z\|_{\infty}\leq M\},\quad \partial^{\star} {\cal G}L_M =\{z\in{{\mathbb Z}}^d:\|z\|_{\infty}= M\},$$ and write ${\cal I}({\cal G}L_M)$ for the collection of independent sets (sets of vertices spanning no edges) in ${\cal G}L_M$. For $\lambda>0$ let ${\bf I}$ be chosen from ${\cal I}({\cal G}L_M)$ with $\Pr({\bf I}=I) \propto \lambda^{|I|}$.
TheoremThere is a constant$C$such that if$\lambda > Cd^{-1/4}\log^{3/4}d$, then$$\lim_{M\rightarrow\infty}\Pr(\underline{0}\in{\bf I}|{\bf I}\supseteq \partial^{\star} {\cal G}L_M\cap {\cal E})~> \lim_{M\rightarrow\infty}\Pr(\underline{0}\in{\bf I}| {\bf I}\supseteq \partial^{\star} {\cal G}L_M\cap {\cal O}).$$ Thus, roughly speaking, the influence of the boundary on behaviour at the origin persists as the boundary recedes.
We consider two interrelated tasks in a synchronous $n$-node ring: distributed constant colouring and local communication. We investigate the impact of the amount of knowledge available to nodes on the time of completing these tasks. Every node knows the labels of nodes up to a distance $r$ from it, called the knowledge radius. In distributed constant colouring every node has to assign itself one out of a constant number of colours, so that adjacent nodes get different colours. In local communication every node has to communicate a message to both of its neighbours. We study these problems in two popular communication models: the one-way model, in which each node can only either transmit to one neighbour or receive from one neighbour, in any round, and the radio model, in which simultaneous receiving from two neighbours results in interference noise. Hence the main problem in fast execution of the above tasks is breaking symmetry with restricted knowledge of the ring.
We show that distributed constant colouring and local communication are tightly related and one can be used to accomplish the other. Also, in most situations the optimal time is the same for both of them, and it strongly depends on knowledge radius. For knowledge radius $r=0$, i.e., when each node knows only its own label, our bounds on time for both tasks are tight in both models: the optimal time in the one-way model is $\Theta(n)$, while in the radio model it is $\Theta(\log n)$. For knowledge radius $r=1$ both tasks can be accomplished in time $O(\log \log n)$ in the one-way model, if the ring is oriented. For $2 \leq r \leq c \log ^* n$, where $c < 1/2$, the upper bounds on time are $O(\log^{(2r)} n)$ in the one-way model and $O(\log ^{(2\lfloor r/2 \rfloor)} n)$ in the radio model; the lower bound is $\Omega (\log^* n)$, in both models. For $r \geq (\log^*n)/2$ both tasks can be completed in constant time, in the one-way model, and distributed constant colouring also in the radio model. Finally, if $r \geq \log^*n$ then constant time is also enough for local communication in the radio model.
We consider random planar graphs on $n$ labelled nodes, and show in particular that if the graph is picked uniformly at random then the expected number of edges is at least $\frac{13}{7}n +o(n)$. To prove this result we give a lower bound on the size of the set of edges that can be added to a planar graph on $n$ nodes and $m$ edges while keeping it planar, and in particular we see that if $m$ is at most $\frac{13}{7}n - c$ (for a suitable constant~$c$) then at least this number of edges can be added.
We describe how a modification of a common technique for developing asymptotic expansions of solutions of linear differential equations can be used to derive Hadamard expansions of solutions of differential equations. Hadamard expansions are convergent series that share some of the features of hyperasymptotic expansions, particularly that of having exponentially small remainders when truncated, and, as a consequence, provide a useful computational tool for evaluating special functions. The methods we discuss can be applied to linear differential equations of hypergeometric type and may have wider applicability.
We consider the Dirac equation given bywith initial condition y1 (0) cos α + y2(0) sin α = 0, α ε [0; π ) and suppose the equation is in the limit-point case at infinity. Using to denote the derivative of the corresponding spectral function, a formula for is given when is known and positive for three distinct values of α. In general, if is known and positive for only two distinct values of α, then is shown to be one of two possibilities. However, in special cases of the Dirac equation, can be uniquely determined given for only two values of α.
We prove the uniqueness of the very singular solution towhen 1 < p < (N + 2)/(N + 1), thus completing the previous result by Qi and Wang, restricted to self-similar solutions.
For any n, m ∈ N, we prove the existence of 2mπ-periodic solutions, with n bouncings in each period, for a second-order forced equation with attractive singularity by using the approach of successor map and Poincaré-Birkhoff twist theorem.
We consider an elliptic boundary problem defined in a bounded region Ω ⊂ Rn and where the spectral parameter is multiplied by a weight function ω(x). We suppose that ω(x) ≠ 0 for x ∈ Ω, but vanishes in a specified manner on the boundary of Ω. Under limited smoothness assumptions, we derive results pertaining to existence and uniqueness of and a priori estimates for solutions of the boundary problem. If S(λ) denotes the operator pencil induced in L2(Ω) by the boundary problem with zero boundary conditions, then results are also derived pertaining to the spectral properties of S(λ).