To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By a recent result, the number of common tangent lines to four unit balls in ℝ3 is bounded by 12 unless the four centres are collinear. In the present paper, this result is complemented by showing that indeed every number of tangents k ∈ {0, …, 12} can be established in real space. The constructions combine geometric and algebraic aspects of the tangent problem.
A major result of D. B. McAlister is that every inverse semigroup is an idempotent separating morphic image of an E-unitary inverse semigroup. The result has been generalized by various authors (including Szendrei, Takizawa, Trotter, Fountain, Almeida, Pin, Weil) to any semigroup of the following types: orthodox, regular, ii-dense with commuting idempotents, E-dense with idempotents forming a subsemigroup, and is-dense. In each case, a semigroup is a morphic image of a semigroup in which the weakly self conjugate core is unitary and separated by the homomorphism. In the present paper, for any variety H of groups and any E-dense semigroup S, the concept of an “H-verbal subsemigroup” of S is introduced which is intimately connected with the least H-congruence on S. What is more, this construction provides a short and easy access to covering results of the aforementioned kind. Moreover, the results are generalized, in that covers over arbitrary group varieties are constructed for any E-dense semigroup. If the given semigroup enjoys a “regularity condition” such as being eventually regular, group bound, or regular, then so does the cover.
It is shown that, for any lattice polytope P⊂ℝd the set int (P)∩lℤd (provided that it is non-empty) contains a point whose coefficient of asymmetry with respect to P is at most 8d · (8l+7)22d+1. If, moreover, P is a simplex, then this bound can be improved to 8 · (8l+7 )2d+1. As an application, new upper bounds on the volume of a lattice polytope are deduced, given its dimension and the number of sublattice points in its interior.
This paper is concerned with convex bodies in n-dimensional lp, spaces, where each body is accessible only by a weak separation or optimization oracle. It studies the asymptotic relative accuracy, as n→∞, of polynomial-time approximation algorithms for the diameter, width, circumradius, and inradius of a body K, and also for the maximum of the norm over K.
A partition of the positive integer n into distinct parts is a decreasing sequence of positive integers whose sum is n, and the number of such partitions is denoted by Q(n). If we adopt the convention that Q(0) = 1, then we have the generating function
Improved upper and lower bounds of the counting functions of the conceivable additive decomposition sets of the set of primes are established. Suppose that where, ℝ′ differs from the set of primes in finitely many elements only and .
It is shown that the counting functions A(x) of ℐ and B(x) of ℬ for sufficiently large x, satisfy
The centroid body. Recall that the support function of a compact convex set K is denned to be hK(u) = maxxΣk: {<u, x>}. The support function hK is positive homogeneous and convex, and any function with these properties is the support function of some compact convex set (see the illuminating paper of Berger [2], or the classic [5] by Bonnesen and Fenchel).
The purpose of this paper is to show how a sieve method which has had many applications to problems involving rational primes can be modified to derive new results on Gaussian primes (or, more generally, prime ideals in algebraic number fields). One consequence of our main theorem (Theorem 2 below) is the following result on rational primes.
A tiling of a convex m-gon by a finite number r of convex n-gons is said to be of type <m, n, r>. The Main Theorem of this paper gives necessary and sufficient conditions on m, n and r for a tiling of type <m, n, r> to exist.
Let (bn) be a sequence of integers, obtained by traversing the rows of Pascal's triangle, as follows: start from the element at the top of the triangle, and at each stage continue from the current element to one of the elements at the next row, either the one immediately to the left of the current element or the one immediately to its right. Consider the distribution of the sequence (bnα) modulo 1 for an irrational α. The main results show that this sequence “often” fails to be uniformly distributed modulo 1, and provide answers to some questions raised by Adams and Petersen.
A subsemigroup S of a semigroup Q is an order in Q if, for every q ∈ Q, there exist a, b, c, d ∈ S such that q = a−1b = cd−1 where a and d are contained in (maximal) subgroups of Q and a−1 and d−1 are their inverses in these subgroups. A semigroup which is a union of its subgroups is completely regular.
Let Mn, n ≥ 3, be a complete oriented minimal hypersurface in Euclidean space Rn+1. It is shown that, if the total scalar curvature on M is less than the n/2 power of 1/2Cs, where Cs is the Sobolev constant for M, and the square norm of the second fundamental form is a L2 function, then M is a hyperplane.
Let Ω be a convex planar domain, with no curvature or regularity assumption on the boundary. Let Nθ(R) = card{RΩθ∩ℤ2}, where Ωθ denotes the rotation of Ω by θ. It is proved that, up to a small logarithmic transgression, Nθ(R) = |Ω|R2 + O(R2/3), for almost every rotation. A refined result based on the fractal structure of the image of the boundary of Ω under the Gauss map is also obtained.
where φ denotes Euler's function. In this memoir we study the set w of sigmaphi numbers, that is, those composite natural numbers n which satisfy
The smallest such number is 65, and they appear to be moderately frequent. There are 290 sigma-phi numbers not exceeding 105 and 1,231 not exceeding 106. By comparison, we observe that the number of primes in these ranges is 9,592 and 78,498, respectively. Since the primes also satisfy the relationship (1.2) a sigma-phi number can be thought of as a kind of pseudo-prime. The motivation for studying sigma-phi numbers is that they should have similar properties to Carmichael numbers but be easier to study. A Carmichael number is a number n such that the least common multiple of the φ(pk) with pk||n divides n-1, i.e., by Korseldt's criterion, a number for which p-1||n-1 whenever p|n. The number of Carmichael numbers not exceeding 105 and 106 is 16 and 43, respectively. It seems that the counting functions for Carmichael and sigma-phi numbers have somewhat similar growth rates. The counts above are skewed by the fact that there are many sigma-phi numbers with exactly two prime factors but there are no Carmichael numbers of this kind.
In this paper we continue the investigation begun in [11]. Let λ1…., λs and μ1, …, μs be real numbers, and define the forms
Further, let τ be a positive real number. Our goal is to determine conditions under which the system of inequalities
has a non-trivial integral solution. As has frequently been the case in work on systems of diophantine inequalities (see, for example, Brüdern and Cook [6] and Cook [7]), we were forced in [11] to impose a condition requiring certain coefficient ratios to be algebraic. A recent paper of Bentkus and Gotze [4] introduced a method for avoiding such a restriction in the study of positivede finite quadratic forms, and these ideas are in fact flexible enough to be applied to other problems. In particular, Freeman [10] was able to adapt the method to obtain an asymptotic lower bound for the number of solutions of a single diophantine inequality, thus finally providing the expected strengthening of a classical theorem of Davenport and Heilbronn [9]. The purpose of the present note is to apply these new ideas to the system of inequalities (1.1).
This paper presents existence criteria for continuous and discrete boundary value problems on the infinite interval, using the notion of upper and lower solution.
A well-known result of Ehrenfeucht states that a difference polynomial f(X)-g(Y) in two variables X, Y with complex coefficients is irreducible if the degrees of f and g are coprime. Panaitopol and Stefǎnescu generalized this result, by giving an irreducibility condition for a larger class of polynomials called “generalized difference polynomials”. This paper gives an irreducibility criterion for more general polynomials, of which the criterion of Panaitopol and Stefǎnescu is a special case.