To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Interest in magnetoconvection arose initially from astrophysics, following the discovery of strong magnetic fields in sunspots, and the realization that their relative coolness (and hence their darkness) was a consequence of magnetic interference with convection. As theoretical studies progressed from linear to nonlinear investigations, and ultimately to massive numerical experiments, it became clear not only that magnetoconvection poses in itself a fascinating challenge to applied mathematicians but also that it serves as a prototype of double-diffusive behaviour in fluid dynamics, oceanography and laboratory experiments.
In this opening chapter we first summarize the development of our subject and then provide a brief survey of the chapters that follow in the book. Although we shall focus our attention on idealized configurations that are mathematically tractable, we also discuss more complex behaviour in the real world.
Background and motivation
The original motivation for our subject came from astrophysics. Stars like the Sun, with deep outer convection zones, are magnetically active. Their magnetic fields are maintained by hydromagnetic dynamo action, resulting from interactions between convection, rotation and magnetic fields in their interiors – just as the geomagnetic field is maintained by a dynamo in the Earth's liquid core. The most prominent magnetic features on the Sun are sunspots, like that shown in Figure 1.1. Although such a spot covers less than of the solar disc, there are other more active stars with huge spots that spread over significant fractions of their surfaces (Thomas and Weiss 2008).
The steady, axisymmetric flow induced by a point sink (or source) submerged in an unbounded inviscid fluid is computed. The resulting deformation of the free surface is obtained, and a limit of steady solutions is found that is quite different to those obtained in past work. More accurate solutions indicate that the old limiting flow rate was too high and, in fact, the breakdown of steady solutions at a lower flow rate is characterized by the appearance of spurious wavelets at the free surface.
Fluid turbulence is often modelled using equations derived from the Navier–Stokes equations, perhaps with some semi-heuristic closure model for the turbulent viscosity. This paper considers a possible alternative hypothesis. It is argued that regarding turbulence as a manifestation of non-Newtonian behaviour may be a viewpoint of at least comparable validity. For a general description of nonlinear viscosity in a Stokes fluid, it is shown that the flow patterns are indistinguishable from those predicted by the Navier–Stokes equation in one- or two-dimensional geometry, but that fully three-dimensional flows differ markedly. The stability of linearized plane Poiseuille flow to three-dimensional disturbances is then considered, in a Tollmien–Schlichting formulation. It is demonstrated that the flow may become unstable at significantly lower Reynolds numbers than those expected from Navier–Stokes theory. Although similar results are known in sections of the rheological literature, the present work attempts to advance the philosophical viewpoint that turbulence might always be regarded as a non-Newtonian effect, to a degree that is dependent only on the particular fluid in question. Such an approach could give a more satisfactory account of the underlying physics.
We develop a simplified analytical approach for pricing discretely-sampled variance swaps with the realized variance, defined in terms of the squared log return of the underlying price. The closed-form formula obtained for Heston’s two-factor stochastic volatility model is in a much simpler form than those proposed in literature. Most interestingly, we discuss the validity of our solution as well as some other previous solutions in different forms in the parameter space. We demonstrate that market practitioners need to be cautious, making sure that their model parameters extracted from market data are in the right parameter subspace, when any of these analytical pricing formulae is adopted to calculate the fair delivery price of a discretely-sampled variance swap.
In this paper a feasible direction method is presented to find all efficient extreme points for a special class of multiple objective linear fractional programming problems, when all denominators are equal. This method is based on the conjugate gradient projection method, so that we start with a feasible point and then a sequence of feasible directions towards all efficient adjacent extremes of the problem can be generated. Since methods based on vertex information may encounter difficulties as the problem size increases, we expect that this method will be less sensitive to problem size. A simple production example is given to illustrate this method.
We investigate two mean–variance optimization problems for a single cohort of workers in an accumulation phase of a defined benefit pension scheme. Since the mortality intensity evolves as a general Markov diffusion process, the liability is random. The fund manager aims to cover this uncertain liability via controlling the asset allocation strategy and the contribution rate. In order to have a more realistic model, we study the case when the risk aversion depends dynamically on current wealth. By solving an extended Hamilton–Jacobi–Bellman system, we obtain analytical solutions for the equilibrium strategies and value function which depend on both current wealth and mortality intensity. Moreover, results for the constant risk aversion are presented as special cases of our models.
We present an efficient computational procedure for the solution of bang–bang optimal control problems. The method is based on a well-known adaptive control parametrization method, which is one of the direct methods for numerical solution of optimal control problems. First, the adaptive control parametrization method is reviewed and then its advantages and disadvantages are illustrated. In order to resolve the need for a priori knowledge about the structure of optimal control and for resolving the sensitivity to an initial guess, a homotopy continuation technique is combined with the adaptive control parametrization method. The present combined method does not require any assumptions on the control structure and the number of switching points. In addition, the switching points are captured accurately; also, efficiency of the method is reported through illustrative examples.