To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Geometric wave theory is the natural extension of WKB theory to situations in which the still layer depth H (and therefore the wave speed) is a slowly varying function of both x and y, and possibly even of t, although we will not consider that case here. In fact, even for constant H geometric wave theory is useful because it allows the computation of the structure of normal modes in bounded domains with irregular shapes, i.e., shapes for which there is no simple explicit expression for the normal modes.
The basic assumption of geometric wave theory is that there is a scale separation between the rapidly varying phase of the wavetrain on the one hand, and the slowly varying layer depth and wavetrain parameters such as amplitude and wavenumber on the other. Of course, in bounded domains the domain size must also be large compared to the wavelength. This basic assumption leads to a flexible and generic asymptotic procedure for solving for the wave field. Eventually, with the inclusion of dispersive effects, geometric wave theory becomes the ray-tracing method, which is the Swiss army knife for computing the asymptotic behaviour of small-scale waves in many fields of physics, including GFD.
A peculiarity of the progression from one-dimensional WKB theory to twodimensional geometric wave theory and finally to dispersive ray tracing is that the structure of the theory becomes easier, not harder,asits generality increases.
This note considers an established reaction–diffusion model for a combustion system, in which there are competing endothermic and exothermic reaction pathways. A combustion front is assumed to move at constant speed through the medium. An asymptotic theory is presented for solid fuels in which material diffusion is ignored, and it allows a simple and complete analysis of the approximate system in the phase plane. Both the adiabatic and nonadiabatic cases are discussed.
Microbial competition for nutrients is a common phenomenon that occurs between species inhabiting the same environment. Bioreactors are often used for the study of microbial competition since the number and type of microbial species can be controlled, and the system can be isolated from other interactions that may occur between the competing species. A common type of competition is the so-called “pure and simple” competition, where the microbial populations interact in no other way except the competition for a single rate-limiting nutrient that affects their growth rates. The issue of whether pure and simple competition under time-invariant conditions can give rise to chaotic behaviour has been unresolved for decades. The third author recently showed, for the first time, that chaos can theoretically occur in these systems by analysing the dynamics of a model where both competing species grow following the biomass-dependent Contois model while the yield coefficients associated with the two species are substrate-dependent. In this paper we show that chaotic behaviour can occur in a much simpler model of pure and simple competition. We examine the case where only one species grows following the Contois model with variable yield coefficient while the other species is allowed to grow following the simple Monod model with constant yield. We show that while the static behaviour of the proposed model is quite simple, the dynamic behaviour is complex and involves period doubling culminating in chaos. The proposed model could serve as a basis to re-examine the importance of Contois kinetics in predicting complex behaviour in microbial competition.
A new formula for Adomian polynomials is introduced and applied to obtain truncated series solutions for fractional initial value problems with nondifferentiable functions. These kinds of equations contain a fractional single term which is examined using Jumarie fractional derivatives and fractional Taylor series for nondifferentiable functions. The property of nonlocality of these equations is examined, and the existence and uniqueness of solutions are discussed. Convergence and error analysis for the Adomian series solution are also studied. Numerical examples show the accuracy and efficiency of this formula for solving initial value problems for high-order fractional differential equations.
Presenting tools for understanding the behaviour of gas-liquid flows based on the ways large scale behaviour relates to small scale interactions, this text is ideal for engineers seeking to enhance the safety and efficiency of natural gas pipelines, water-cooled nuclear reactors, absorbers, distillation columns and gas lift pumps. The review of advanced concepts in fluid mechanics enables both graduate students and practising engineers to tackle the scientific literature and engage in advanced research. It focuses on gas-liquid flow in pipes as a simple system with meaningful experimental data. This unified theory develops design equations for predicting drop size, frictional pressure losses and slug frequency, which can be used to determine flow regimes, the effects of pipe diameter, liquid viscosity and gas density. It describes the effect of wavy boundaries and temporal oscillations on turbulent flows, and explains transition between phases, which is key to understanding the behaviour of gas-liquid flows.
This chapter describes the stratified pattern observed in gas–liquid flows, for which liquid flows along the bottom of a conduit and gas flows along the top. The gas exerts a shear stress on the surface of the liquid. It is desired to calculate the average height of the liquid layer and the pressure gradient for given liquid and gas flow rates. The flow is considered to be fully developed so that the height of the liquid is not changing in the flow direction and the pressure gradient is the same in the gas and liquid flows.
In order to consider stratified flow in circular pipes, the simplified model of the flow pattern, presented by Govier & Aziz (1972), is exploited. The interface is pictured to be flat. At large gas velocities, some of the liquid can be entrained in the gas. This pattern is considered in Section 12.5 entitled “the pool model” for horizontal annular flow.
Horizontal annular flows differ from vertical annular flows in that gravity causes asymmetric distributions of the liquid in the wall layer and of droplets in the gas flow. The understanding of this behavior is a central problem in describing this system. Because of these asymmetries, entrainment can increase much more strongly with increasing gas velocity than is found for vertical flows.
Theoretical analyses of the influence of gravity on the distribution of liquid in the wall film and on the distribution of droplets in the gas phase are reviewed. As with vertical annular flows, entrainment is considered to be a balance between the rate of atomization of the wall film and rate of deposition of droplets. Because of the asymmetric film distribution, the local rate of atomization varies around the pipe circumference. This is treated theoretically by assuming that the local rate is the same as would be observed for vertical annular flow. Gravitational settling contributes directly to deposition so that the rate of deposition is enhanced. Thus, at low gas velocities, entrainment can be much smaller for horizontal annular flows than for vertical annular flows.
Particles entrained in a turbulent fluid are dispersed by velocity fluctuations; they assume a motion that is related to the fluid turbulence. If the suspension flows through a conduit, deposition on a wall depends on the particle turbulence. An understanding of these processes is needed to describe the annular flow regime for which liquid flows along the walls and as drops in the gas flow. The fraction of liquid that is entrained by the gas depends on the rate at which the film is atomized and the rate at which drops deposit on the film.
Equations for trajectories of spherical drops and bubbles in a turbulent flow field are developed. These are used to relate the turbulence properties and the dispersion of particles to the turbulence properties of the fluid in which they are entrained. Of particular interest is the development of relations for the influence of drop size on drop turbulence and on drop dispersion.
A central issue to be addressed in analyzing the behavior of bubbles in a gas–liquid flow is understanding the free-fall velocity of a spherical solid particle and the rise velocity of a spherical bubble in an infinite stationary fluid. Analytical solutions for these systems are available for very low particle Reynolds numbers (Stokes law and the Hadamard equation). A derivation of Stokes law is presented in the first part of this chapter.
Experiments show that Stokes law is valid for particle Reynolds numbers less than unity. For larger ReP, empirical correlations of the drag coefficient are used. The description of the rise velocity of bubbles is complicated by possible contamination of the interface. Measurements of the rise velocity of single bubbles are usually presented as plots of US versus the bubble size for a given system. The structure of these plots reflects changes in the shape and behavior of the bubbles. Very large bubbles take the shape of a cap. A prediction of the rise velocity of these cap bubbles, developed by Batchelor, is presented in Section 8.7.
The one-dimensional analysis and the correlations for frictional pressure drop and void fraction (presented in Chapter 1) have been widely used as a starting point for engineering designs. However, these correlations have the handicap that the structure of the phase boundaries is ignored. As a consequence, they often give results which are only a rough approximation and overlook phenomena which could be of first-order importance in understanding the behavior of a system.
It is now recognized that the central issue in developing a scientific approach to gas–liquid flows is the understanding of how the phases are distributed and of how the behavior of a multiphase system is related to this structure (Hanratty et al., 2003). Of particular interest is the finding that macroscopic behavior is dependent on small-scale interactions. An example of this dependence is that the presence of small amounts of high molecular weight polymers can change an annular flow into a stratified flow by damping interfacial waves (Al-Sarkhi & Hanratty, 2001a).
Chapter 2 gives considerable attention to slug flow because of its central role in understanding the configuration of the phases in horizontal and inclined pipes. Several criteria have been identified to define the boundaries of this regime: (1) viscous large-wavelength instability of a stratified flow; (2) Kelvin–Helmholtz instability of a stratified flow; (3) stability of a slug; (4) coalescence of large-amplitude waves. Bontozoglou & Hanratty (1990) suggested that a sub-critical non-linear Kelvin–Helmholtz instability could be an effective mechanism in pipes with very large diameters, but this analysis has not been tested. A consideration of the stability of a slug emerges as being particularly important. It explains the initiation of slugs for very viscous liquids, for high-density gases, for gas velocities where wave coalescence is important and for the evolution of pseudo-slugs into slugs. Chapter 2 (Section 2.2.5) outlines an analysis of slug stability which points out the importance of understanding the rate at which slugs shed liquid. Section 9.2 continues this discussion by developing a relation for Qsh and for the critical height of the liquid layer needed to support a stable slug. Section 9.3 develops a tentative model for horizontal slug flow. Section 9.4 considers the frequency of slugging.
Necessary conditions for the existence of slugs
Figure 9.1 presents simplified sketches of the front and the tail of a slug in a pipeline. The front has a velocity cF; the back has a velocity cB. The stratified liquid layer in front of the slug has a velocity and area designated by uL1, AL1. The mean velocity of the liquid in the slug is uL3. The slug is usually aerated; the mean volume fraction of gas in the slug is designated by α. The gas at station 1 is moving from left to right at a velocity uG1. The assumption is made that the velocity fields can be approximated as being uniform.