To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Of concern in plasticity theory is the yield strength, which is the level of stress that causes appreciable plastic deformation. It is tempting to define yielding as occurring at an elastic limit (the stress that causes the first plastic deformation) or at a proportional limit (the first departure from linearity). However, neither definition is very useful because they both depend on accuracy of strain measurement. The more accurately the strain is measured, the lower is the stress at which plastic deformation and non-linearity can be detected.
To avoid this problem, the onset of plasticity is usually described by an offset yield strength that can be measured with more reproducibility. It is found by constructing a straight line parallel to the initial linear portion of the stress strain curve, but offset from it by a strain of Δe = 0.002 (0.2%). The yield strength is taken as the stress level at which this straight line intersects the stress strain curve (Figure 2.1). The rationale is that if the material had been loaded to this stress and then unloaded, the unloading path would have been along this offset line resulting in a plastic strain of e = 0.002 (0.2%). This method of defining yielding is easily reproduced.
Slip-line field analysis involves plane-strain deformation fields that are both geometrically self-consistent and statically admissible. Therefore, the results are exact solutions. Slip lines are really planes of maximum shear stress and are oriented at 45 degrees to the axes of principal stress. The basic assumptions are that the material is isotropic and homogeneous and rigid-ideally plastic (that is, no strain hardening and that shear stresses at interfaces are constant). Effects of temperature and strain rate are ignored.
Figure 6.1 shows a very simple slip-line field for indentation. In this case, the thickness, t, equals the width of the indenter, b and both are very much smaller than w. The maximum shear stress occurs on lines DEB and CEA. The material in triangles DEA and CEB is rigid. Although the field must change as the indenters move closer together, the force can be calculated for the geometry as shown. The stress, σy, must be zero because there is no restrain to lateral movement. The stress, σz, must be intermediate between σx and σy. Figure 6.2 shows the Mohr's circle for this condition. The compressive stress necessary for this indentation, σx = −2k. Few slip-line fields are composed of only straight lines. More complicated fields are considered throughout this chapter.
Steady water infiltration in homogeneous soils is governed by the Richards equation. This equation can be studied more conveniently by transforming to a type of Helmholtz equation. In this study, a dual-reciprocity boundary element method (DRBEM) is employed to solve the Helmholtz equation numerically. Using the solutions obtained, numerical values of the suction potential are then computed. The proposed method is tested on problems involving infiltration from different types of periodic channels in a homogeneous soil. Moreover, the method is also examined using infiltration from periodic trapezoidal channels in three different types of homogeneous soil.
This paper presents an integrated guidance and control (IGC) design method for an unmanned aerial vehicle with static stability which is described by a nonlinear six-degree-of-freedom (6-DOF) model. The model is linearized by using small disturbance linearization. The dynamic characteristics of pitching mode, rolling mode and Dutch rolling mode are obtained by analysing the linearized model. Furthermore, an IGC design procedure is also proposed in conjunction with a proportional–integral–derivative (PID) control method and fuzzy control method. A PID controller is applied in the control loop of the elevator and aileron, and the attitude angle and attitude angular velocity are used as compensation feedback, giving a simple and low-order control law. A fuzzy control method is applied to perform the cross-coupling control of rolling and yawing. Finally, the 6-DOF simulation shows the effectiveness of the developed method.
This best-selling textbook presents the concepts of continuum mechanics in a simple yet rigorous manner. It introduces the invariant form as well as the component form of the basic equations and their applications to problems in elasticity, fluid mechanics and heat transfer, and offers a brief introduction to linear viscoelasticity. The book is ideal for advanced undergraduates and graduate students looking to gain a strong background in the basic principles common to all major engineering fields, and for those who will pursue further work in fluid dynamics, elasticity, plates and shells, viscoelasticity, plasticity, and interdisciplinary areas such as geomechanics, biomechanics, mechanobiology and nanoscience. The book features derivations of the basic equations of mechanics in invariant (vector and tensor) form and specification of the governing equations to various co-ordinate systems, and numerous illustrative examples, chapter summaries and exercise problems. This second edition includes additional explanations, examples and problems.
About once every four years, the sea-surface temperature in the Eastern Equatorial Pacific is a few degrees higher than normal (Philander, 1990). Near the South American coast, this warming of the ocean water is usually at its maximum around Christmas. Long ago, Peruvian fishermen called it El Niño, the Spanish phrase for the Christ Child.
Phenomena
During the past several decades, El Niño has been observed in unprecedented detail thanks to the implementation of the TAO/TRITON array and the launch of satellite-borne instruments (McPhaden et al., 1998). The relevant quantities to characterise the state in the equatorial ocean and atmosphere are sea level pressure, sea-surface temperature (SST), sea level height, surface wind and ocean subsurface temperature.
The annual mean state of the equatorial Pacific sea-surface temperature is characterised by the zonal contrast between the western Pacific “warm pool” and the “cold tongue” in the eastern Pacific. The mean temperature in the eastern Pacific is approximately 23°C, with seasonal excursions of about 3°C. What makes El Niño unique among other interesting phenomena of natural climate variability is that it has both a well-defined spatial pattern and a relatively well-defined time scale. The pattern of the sea-surface temperature anomaly for December 1997 is plotted in Fig. 8.1 and shows a large area where the SST is larger than average.
Dynamical systems theory is an extremely powerful framework for understanding the behavior of complex systems. Its concepts apply to many scientific fields, and hence its language provides a multidisciplinary and unifying communication tool. The theory provides a systematic approach for assessing the sensitivity of a mathematical model of a particular phenomenon to changes in parameters and initial conditions. As such, it finds application in stability problems, transition behavior and predictability studies. In addition, techniques and concepts from dynamical systems theory have led to the development of a diverse set of nonlinear methods of time series analysis.
For many phenomena, existing models cannot resolve all relevant spatial and temporal scales, and hence small-scale features are often represented as ‘noise’. As a result of the increase in computational power, solutions of the resulting stochastic partial differential equations are now within reach. Although stochastic dynamical systems are difficult to deal with, in recent years, the theory of stochastic dynamical systems has matured and is ready to be applied to many scientific areas.
This book developed from a course on climate dynamics that I taught at Colorado State University in 2005 and a course on stochastic climate models that I taught at Utrecht University in 2008. My main motivation in writing this book was to provide both an introduction into stochastic dynamical systems theory and to show the application of these methods to problems in climate dynamics.