To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A second-order in time finite-difference scheme using a modified predictor–corrector method is proposed for the numerical solution of the generalized Burgers–Fisher equation. The method introduced, which, in contrast to the classical predictor–corrector method is direct and uses updated values for the evaluation of the components of the unknown vector, is also analysed for stability. Its efficiency is tested for a single-kink wave by comparing experimental results with others selected from the available literature. Moreover, comparisons with the classical method and relevant analogous modified methods are given. Finally, the behaviour and physical meaning of the two-kink wave arising from the collision of two single-kink waves are examined.
This paper is concerned with the initial boundary value problem of a class of nonlinear wave equations and reaction–diffusion equations with several nonlinear source terms of different signs. For the initial boundary value problem of the nonlinear wave equations, we derive a blow up result for certain initial data with arbitrary positive initial energy. For the initial boundary value problem of the nonlinear reaction–diffusion equations, we discuss some probabilities of the existence and nonexistence of global solutions and give some sufficient conditions for the global and nonglobal existence of solutions at high initial energy level by employing the comparison principle and variational methods.
William Hosford's book is ideal for those involved in designing sheet metal forming processes. Knowledge of plasticity is essential for the computer simulation of metal forming processes and understanding the advances in plasticity theory is key to formulating sound analyses. The author makes the subject simple by avoiding notations used by specialists in mechanics. R. Hill's authoritative book, Mathematical Theory of Plasticity (1950), presented a comprehensive treatment of continuum plasticity theory up to that time; much of the treatment in this book covers the same ground, but focuses on more practical topics. Hosford has included recent developments in continuum theory, including a newer treatment of anisotropy that has resulted from calculations of yielding based on crystallography, analysis of the role of defects, and forming limit diagrams. A much greater emphasis is placed on deformation mechanisms and the book also includes chapters on slip and dislocation theory and twinning.
This book introduces stochastic dynamical systems theory in order to synthesize our current knowledge of climate variability. Nonlinear processes, such as advection, radiation and turbulent mixing, play a central role in climate variability. These processes can give rise to transition phenomena, associated with tipping or bifurcation points, once external conditions are changed. The theory of dynamical systems provides a systematic way to study these transition phenomena. Its stochastic extension also forms the basis of modern (nonlinear) data analysis techniques, predictability studies and data assimilation methods. Early chapters apply the stochastic dynamical systems framework to a hierarchy of climate models to synthesize current knowledge of climate variability. Later chapters analyse phenomena such as the North Atlantic Oscillation, El Niño/Southern Oscillation, Atlantic Multidecadal Variability, Dansgaard–Oeschger events, Pleistocene ice ages and climate predictability. This book will prove invaluable for graduate students and researchers in climate dynamics, physical oceanography, meteorology and paleoclimatology.
Nonlocal calculus is often overlooked in the mathematics curriculum. In this paper we present an interesting new class of nonlocal problems that arise from modelling the growth and division of cells, especially cancer cells, as they progress through the cell cycle. The cellular biomass is assumed to be unstructured in size or position, and its evolution governed by a time-dependent system of ordinary differential equations with multiple time delays. The system is linear and taken to be autonomous. As a result, it is possible to reduce its solution to that of a nonlinear matrix eigenvalue problem. This method is illustrated by considering case studies, including a model of the cell cycle developed recently by Simms, Bean and Koeber. The paper concludes by explaining how asymptotic expressions for the distribution of cells across the compartments can be determined and used to assess the impact of different chemotherapeutic agents.
In 1991, McNabb introduced the concept of mean action time (MAT) as a finite measure of the time required for a diffusive process to effectively reach steady state. Although this concept was initially adopted by others within the Australian and New Zealand applied mathematics community, it appears to have had little use outside this region until very recently, when in 2010 Berezhkovskii and co-workers [A. M. Berezhkovskii, C. Sample and S. Y. Shvartsman, “How long does it take to establish a morphogen gradient?” Biophys. J.99 (2010) L59–L61] rediscovered the concept of MAT in their study of morphogen gradient formation. All previous work in this area has been limited to studying single-species differential equations, such as the linear advection–diffusion–reaction equation. Here we generalize the concept of MAT by showing how the theory can be applied to coupled linear processes. We begin by studying coupled ordinary differential equations and extend our approach to coupled partial differential equations. Our new results have broad applications, for example the analysis of models describing coupled chemical decay and cell differentiation processes.
We propose a modified projected Polak–Ribière–Polyak (PRP) conjugate gradient method, where a modified conjugacy condition and a method which generates sufficient descent directions are incorporated into the construction of a suitable conjugacy parameter. It is shown that the proposed method is a modification of the PRP method and generates sufficient descent directions at each iteration. With an Armijo-type line search, the theory of global convergence is established under two weak assumptions. Numerical experiments are employed to test the efficiency of the algorithm in solving some benchmark test problems available in the literature. The numerical results obtained indicate that the algorithm outperforms an existing similar algorithm in requiring fewer function evaluations and fewer iterations to find optimal solutions with the same tolerance.
Patchy or divided populations can be important to infectious disease transmission. We first show that Lloyd’s mean crowding index, an index of patchiness from ecology, appears as a term in simple deterministic epidemic models of the SIR type. Using these models, we demonstrate that the rate of movement between patches is crucial for epidemic dynamics. In particular, there is a relationship between epidemic final size and epidemic duration in patchy habitats: controlling inter-patch movement will reduce epidemic duration, but also final size. This suggests that a strategy of quarantining infected areas during the initial phases of a virulent epidemic might reduce epidemic duration, but leave the population vulnerable to future epidemics by inhibiting the development of herd immunity.