To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Earth is a dynamic system. Internal processes, together with external gravitational forces of the Sun, Moon and planets, displace the Earth's mass, impacting on its shape, rotation and gravitational field. D. E. Smylie provides a rigorous overview of the dynamical behaviour of the solid Earth, explaining the theory and presenting methods for numerical implementation. Topics include advanced digital analysis, earthquake displacement fields, Free Core Nutations observed by the Very Long Baseline Interferometric technique, translational modes of the solid inner core observed by the superconducting gravimeters, and dynamics of the outer fluid core. This book is supported by freeware computer code, available online for students to implement the theory. Online materials also include a suite of graphics generated from the numerical analysis, combined with 100 graphic examples in the book to make this an ideal tool for researchers and graduate students in the fields of geodesy, seismology and solid Earth geophysics. The book covers broadly applicable subjects such as the analysis of unequally spaced time series by Singular Value Decomposition, as well as specific topics on Earth dynamics.
This new textbook seeks to promote a deep yet accessible understanding of mesoscale-convective processes in the atmosphere. Mesoscale-convective processes are commonly manifested in the form of thunderstorms, which are fast evolving, inherently hazardous, and can assume a broad range of sizes and severity. Modern explanations of the convective-storm dynamics, and of the related development of tornadoes, damaging 'straight-line' winds and heavy rainfall, are provided. Students and weather professionals will benefit especially from unique chapters devoted to observations and measurements of mesoscale phenomena, mesoscale prediction and predictability, and dynamical feedbacks between mesoscale-convective processes and larger-scale motions.
Annual epidemics of influenza A typically involve two subtypes, with a degree of cross-immunity. We present a model of an epidemic of two interacting viruses, where the degree of cross-immunity may be unknown. We treat the unknown as a second independent variable, and expand the dependent variables in orthogonal functions of this variable. The resulting set of differential equations is solved numerically. We show that if the population is initially more susceptible to one variant, if that variant invades earlier, or if it has a higher basic reproduction number than the other variant, then its dynamics are largely unaffected by cross-immunity. In contrast, the dynamics of the other variant may be considerably restricted.
Temperature distributions recorded by thermocouples in a solid body (slab) subject to surface heating are used in a mathematical model of two-dimensional heat conduction. The corresponding Dirichlet problem for a holomorphic function (complex potential), involving temperature and a heat stream function, is solved in a strip. The Zhukovskii function is reconstructed through singular integrals, involving an auxiliary complex variable. The complex potential is mapped onto an auxiliary half-plane. The flow net (orthogonal isotherms and heat lines) of heat conduction is compared with the known Carslaw–Jaeger solution and shows a puzzling topology of three regimes of energy fluxes for temperature boundary conditions common in passive thermal insulation. The simplest regime is realized if cooling of a shaded zone is mild and heat flows in a slightly distorted “resistor model” flow tube. The second regime emerges when cooling is stronger and two disconnected separatrices demarcate the back-flow of heat from a relatively hot segment of the slab surface to the atmosphere through relatively cold parts of this surface. The third topological regime is characterized by a single separatrix with a critical point inside the slab, where the thermal gradient is nil. In this regime the back-suction of heat into the atmosphere is most intensive. The closed-form solutions obtained can be used in assessment of efficiency of thermal protection of buildings.
A theoretical investigation of the unsteady flow of a Newtonian fluid through a channel is presented using an alternative boundary condition to the standard no-slip condition, namely the Navier boundary condition, independently proposed over a hundred years ago by both Navier and Maxwell. This boundary condition contains an extra parameter called the slip length, and the most general case of a constant but different slip length on each channel wall is studied. An analytical solution for the velocity distribution through the channel is obtained via a Fourier series, and is used as a benchmark for numerical simulations performed utilizing a finite element analysis modified with a penalty method to implement the slip boundary condition. Comparison between the analytical and numerical solution shows excellent agreement for all combinations of slip lengths considered.
Selective withdrawal of a two-layer fluid is considered. The fluid layers are weakly compressible, miscible and viscous and therefore flow rotationally. The lower, denser fluid flows with constant velocity out through one or more drain holes in the bottom of a rectangular tank. The drain is opened impulsively and the subsequent draw-down produces waves in the interface which travel outward to the edges of the tank and are reflected back with a $18{0}^{\circ } $ change of phase. The points on the interface that have the highest absolute gradient form regions of high vorticity in the tank, enabling mixing of the fluids. An inviscid linearized interface is computed and compared to contour plots of density for the viscous solution. The two agree closely at early times in the withdrawal process, but as time increases, nonlinear and viscous effects take over. The time at which the lighter fluid starts to flow out of the tank is dependent on the number of drains, their width, and the fluid flow rate and density, and is investigated here.
We develop a computational method for solving an optimal control problem governed by a switched impulsive dynamical system with time delay. At each time instant, only one subsystem is active. We propose a computational method for solving this optimal control problem where the time spent by the state in each subsystem is treated as a new parameter. These parameters and the jump strengths of the impulses are decision parameters to be optimized. The gradient formula of the cost function is derived in terms of solving a number of delay differential equations forward in time. Based on this, the optimal control problem can be solved as an optimization problem.
We consider a hybrid model, created by coupling a continuum and an agent-based model of infectious disease. The framework of the hybrid model provides a mechanism to study the spread of infection at both the individual and population levels. This approach captures the stochastic spatial heterogeneity at the individual level, which is directly related to deterministic population level properties. This facilitates the study of spatial aspects of the epidemic process. A spatial analysis, involving counting the number of infectious agents in equally sized bins, reveals when the spatial domain is nonhomogeneous.
Turbulence is ubiquitous in science, technology and daily life and yet, despite years of research, our understanding of its fundamental nature is still tentative and incomplete. More generally, the tools required for a deep understanding of strongly interacting many-body systems remain underdeveloped. Inspired by a research programme held at the Newton Institute in Cambridge, this book contains reviews by leading experts that summarize our current understanding of the nature of turbulence from theoretical, experimental, observational and computational points of view. The articles cover a wide range of topics, including the scaling and organized motion in wall turbulence, small scale structure, dynamics and statistics of homogeneous turbulence, turbulent transport and mixing, and effects of rotation, stratification and magnetohydrodynamics, as well as superfluidity. The book will be useful to researchers and graduate students interested in the fundamental nature of turbulence at high Reynolds numbers.
Increased frequency and severity of stressors associated with climate change are drastically altering ecosystems. Caribbean coral reefs differ markedly from just 30 years ago, with much restructuring attributable to infectious disease outbreaks. Using a classic epidemiological approach, we demonstrate how density-dependent demographic rates serve as a mechanism for intrinsic coral resilience to population perturbations arising from disturbances such as disease. We explore the impact of allowing infection status to influence demographic rates and ascertain outbreak thresholds that are corroborated by epizootic patterns observed in the field. We discuss how our threshold calculations may provide metrics of coral epizootic early warning systems. Integrating our infection model with equations describing the interspecific competition for space between coral and macroalgae, we provide new mechanistic understanding of the influence that coral life history dynamism and infectious disease have on the changing face of these threatened ecosystems.
Random networks were first used to model epidemic dynamics in the 1950s, but in the last decade it has been realized that scale-free networks more accurately represent the network structure of many real-world situations. Here we give an analytical and a Monte Carlo method for approximating the basic reproduction number ${R}_{0} $ of an infectious agent on a network. We investigate how final epidemic size depends on ${R}_{0} $ and on network density in random networks and in scale-free networks with a Pareto exponent of 3. Our results show that: (i) an epidemic on a random network has the same average final size as an epidemic in a well-mixed population with the same value of ${R}_{0} $; (ii) an epidemic on a scale-free network has a larger average final size than in an equivalent well-mixed population if ${R}_{0} \lt 1$, and a smaller average final size than in a well-mixed population if ${R}_{0} \gt 1$; (iii) an epidemic on a scale-free network spreads more rapidly than an epidemic on a random network or in a well-mixed population.
Magnetic fields are ubiquitous in the universe (Parker (1979); Zeldovich et al. (1983)). Their interaction with an electrically conducting fluid gives rise to a complex system–a magnetofluid-whose dynamics is quite distinct from that of either a non conducting fluid, or that of a magnetic field in a vacuum (Cowling (1976)). The scales of these interactions vary in nature from metres to megaparsecs and in most situations, the dissipative processes occur on small enough scales that the resulting flows are turbulent. The purpose of this review is to discuss a small fraction of what is currently known about the properties of these turbulent flows. We refer the reader to several recent reviews for a broader view of the field (Biskamp (2003); Galtier (2008, 2009); Lazarian (2006); Lazarian & Cho (2005); Müller & Busse (2007); Kulsrud & Zweibel (2008), Bigot et al. 2008, Sridhar 2010, Brandenburg & Nordlund 2010). The electrically conducting fluid most commonly found in nature is ionized gas, i.e. a plasma, and its description in terms of all its fundamental constituents is extremely complex (see e.g. Kulsrud (2005)). In many circumstances, however, these complexities can be neglected in favour of a simplified description in term of a single fluid interacting with a magnetic field. Formally, this approach is justifiable when the processes of interest occur on timescales long compared with the light-crossing time, and on spatial scales much larger that any characteristic plasma length.
This chapter deals with the dynamics of wall-bounded turbulent flows, with a decided emphasis on the results of numerical simulations. As we will see, part of the reason for that emphasis is that much of the recent work on dynamics has been computational, but also that the companion chapter by Marusic and Adrian (2012) in this volume reviews the results of experiments over the same period.
The first direct numerical simulations (DNS) of wall-bounded turbulence (Kim et al., 1987) began to appear soon after computers became powerful enough to allow the simulation of turbulence in general (Siggia, 1981; Rogallo, 1981). Large-eddy simulations (LES) of wall-bounded flows had been published before (Deardorff, 1970; Moin and Kim, 1982) but, after DNS became current, they were de-emphasized as means of clarifying the flow physics, in part because doubts emerged about the effect of the poorly resolved near-wall region on the rest of the flow. Some of the work summarized below has eased those misgivings, and there are probably few reasons to distrust the information provided by LES on the largest flow structures, but any review of the physical results of numerics in the recent past necessarily has to deal mostly with DNS. Only atmospheric scientists, for whom the prospect of direct simulation remains remote, have continued to use LES to study the mechanics of the atmospheric surface layer (see, for example, Deardorff, 1973; Siebesma et al., 2003). A summary of the early years of numerical turbulence research can be found in Rogallo and Moin (1984) and Moin and Mahesh (1998).
Stable density stratification can have a strong effect on fluid flows. For example, a stably-stratified fluid can support the propagation of internal waves. Also, at large enough horizontal scales, flow in a stably-stratified fluid will not have enough kinetic energy to overcome the potential energy needed to overturn; therefore flows at this horizontal scale and larger cannot overturn, greatly constraining the types of motions possible. Both of these effects were observed in laboratory experiments of wakes in stably-stratified fluids (see, e.g., (Lin and Pao, 1979)). In the wake experiments, generally the flow in the near wake of the source, e.g., a towed sphere or a towed grid, consisted of three-dimensional turbulence, little affected by the stable stratification. As the flow decayed, however, the effects of stratification became continually more important. After a few buoyancy periods, when the effects of stable stratification started to dominate, the flow had changed dramatically, and consisted of both internal waves and quasi-horizontal motions. Following Lilly (1983), we will call such motions, consisting of both internal waves and quasi-horizontal motions due to the domination of stable stratification, as “stratified turbulence”. It has become clear that such flows, while being strongly constrained by the stable stratification, have many of the features of turbulence, including being stochastic, strongly nonlinear, strongly dispersive, and strongly dissipative.
A primary interest in stratified turbulence is how energy in such flows, strongly affected by stable stratification, is still effectively cascaded down to smaller scales and into three-dimensional turbulence, where it is ultimately dissipated.
Ancient depictions of fluids, going back to the Minoans, envisaged waves and moving streams. They missed what we would call vortices and turbulence. The first artist to depict the rotational properties of fluids, vortical motion and turbulent flows was da Vinci (1506 to 1510). He would recognize the term vortical motion as it comes from the Latin vortere or vertere: to turn, meaning that vorticity is where a gas or liquid is rapidly turning or spiraling. Mathematically, one represents this effect as twists in the velocity derivative, that is the curl or the anti-symmetric component of the velocity gradient tensor. If the velocity field is u, then for the vorticity is ω = ∇ × u.
The aspect of turbulence which this chapter will focus upon is the structure, dynamics and evolution of vorticity in idealized turbulence – either the products of homogeneous, isotropic, statistically stationary states in forced, periodic simulations, or flows using idealized initial conditions designed to let us understand those states. The isotropic state is often viewed as a tangle of vorticity (at least when the amplitudes are large), an example of which is given in Fig. 2.1. This visualization shows isosurfaces of the magnitude of the vorticity, and similar techniques have been discussed before (see e.g. Pullin and Saffman, 1998; Ishihara et al., 2009; Tsinober, 2009). The goal of this chapter is to relate these graphics to basic relations between the vorticity and strain, to how this subject has evolved to using vorticity as a measure of regularity, then focus on the structure and dynamics of vorticity in turbulence, in experiments and numerical investigations, before considering theoretical explanations. Our discussions will focus upon three-dimensional turbulence.
The wide ranges of length and velocity scales that occur in turbulent flows make them both interesting and difficult to understand. The length scale range is widest in high Reynolds number turbulent wall flows where the dominant contribution of small scales to the stress and energy very close to the wall gives way to dominance of larger scales with increasing distance away from the wall. Intrinsic length scales are defined statistically by the two-point spatial correlation function, the power spectral density, conditional averages, proper orthogonal decomposition, wavelet analysis and the like. Before two- and three-dimensional turbulence data became available from PIV and DNS, it was necessary to attempt to infer the structure of the eddies that constitute the flow from these statistical quantities or from qualitative flow visualization. Currently, PIV and DNS enable quantitative, direct observation of structure and measurement of the scales associated with instantaneous flow patterns. The purpose of this chapter is to review the behavior of statistically-based scales in wall turbulence, to summarize our current understanding of the geometry and scales of various coherent structures and to discuss the relationship between instantaneous structures of various scales and statistical measures.
Introduction
Wall-bounded turbulent flows are pertinent in a great number of fields, including geophysics, biology, and most importantly engineering and energy technologies where skin friction, heat and mass transfer, flow-generated noise, boundary layer development and turbulence structure are often critical for system performance and environmental impact.
Fully developed turbulence is a phenomenon involving huge numbers of degrees of dynamical freedom. The motions of a turbulent fluid are sensitive to small differences in flow conditions, so though the latter are seemingly identical they may give rise to large differences in the motions.1 It is difficult to predict them in full detail.
This difficulty is similar, in a sense, to the one we face in treating systems consisting of an Avogadro number of molecules, in which it is impossible to predict the motions of them all. It is known, however, that certain relations, such as the ideal gas laws, between a few number of variables such as pressure, volume, and temperature are insensitive to differences in the motions, shapes, collision processes, etc. of the molecules.
Given this, it is natural to ask whether there is any such relation in turbulence. In this regard, we recall that fluid motion is determined by flow conditions, such as boundary conditions and forcing. It is unlikely that the motion would be insensitive to the difference in these conditions, especially at large scales. It is also tempting, however, to assume that, in the statistics at sufficiently small scales in fully developed turbulence at sufficiently high Reynolds number, and away from the flow boundaries, there exist certain kinds of relation which are universal in the sense that they are insensitive to the detail of large-scale flow conditions. In fact, this idea underlies Kolmogorov's theory (Kolmogorov, 1941a, hereafter referred as K41), and has been at the heart of many modern studies of turbulence. Hereafter, universality in this sense is referred to as universality in the sense of K41
For good practical reasons, most experimental observations of turbulent flow are made at fixed points x in space at time t and most numerical calculations are performed on a fixed spatial grid and at fixed times. On the other hand, it is possible to describe the flow in terms of the velocity and concentration (and other quantities of interest) at a point moving with the flow. This is known as a Lagrangian description of the flow ((Monin and Yaglom, 1971)). The position of this point x+(t; x0, t0) is a function of time and of some initial point x0 and time t0 at which it was identified or “labelled”. Its velocity is the velocity of the fluid where it happens to be at time t, u+ (t; x0, t0) = u(x+(t), t). We will use the superscript (+) to denote Lagrangian quantities, and quantities after the semi-colon are independent parameters. We refer to a point moving in this way as a fluid particle.
Flow statistics obtained at fixed points and times are known as Eulerian statistics. On the other hand, statistics obtained at specific times by sampling over trajectories, which at some reference times passed through fixed points, are known as Lagrangian statistics. For example, the mean displacement at time t of those particles that passed through the point x0 at time t0 is just 〈x+ (t; x0, t0) − x0〉. In both cases, the measurement time t can be earlier or later than the reference time.