To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A quasi-trapezoid inequality is derived for double integrals that strengthens considerably existing results. A consonant version of the Grüss inequality is also derived. Applications are made to cubature formulæ and the error variance of a stationary variogram.
This note describes a simple numerical method for solution of the lifting surface integral equation of aerodynamics, and provides benchmark computations of up to 7 figure accuracy for flat rectangular wings of arbitrary aspect ratio. The nature of the large aspect ratio limit is also investigated numerically and asymptotically. This enables determination of the limiting behaviour near the wing tips, which is compared to the predictions of lifting line theory. Generalisations to non-rectangular wings are discussed.
In this paper we consider an optimal control problem governed by a system of nonlinear hyperbolic partial differential equations with deviating argument, Darboux-type boundary conditions and terminal state inequality constraints. The control variables are assumed to be measurable and the state variables are assumed to belong to a Sobolev space. We derive an integral representation of the increments of the functionals involved, and using separation theorems of functional analysis, obtain necessary conditions for optimality in the form of a Pontryagin maximum principle. The approach presented here applies equally well to other nonlinear constrained distributed parameters with deviating argument.
The problem of surface water wave scattering by two thin nearly vertical barriers submerged in deep water from the same depth below the mean free surface and extending infinitely downwards is investigated here assuming linear theory, where configurations of the two barriers are described by the same shape function. By employing a simplified perturbational analysis together with appropriate applications of Green's integral theorem, first-order corrections to the reflection and transmission coefficients are obtained. As in the case of a single nearly vertical barrier, the first-order correction to the transmission coefficient is found to vanish identically, while the correction for the reflection coefficient is obtained in terms of a number of definite integrals involving the shape function describing the two barriers. The result for a single barrier is recovered when two barriers are merged into a single barrier.
For the class of continuous games where σi and fi {σi, φ(σ1, …, σN)} are the strategy of and payoff to player i for i = 1, …, N, it is proved that the set of weak type I optima defined in Paper I conicide with the set of solution of a matrix condition. The latter condition restricts the equilibrium solutions of an adjustment process. Numerical results for N = 2 and N = 3 indicate that the set of all equilibrium solutions coincides with the above sets. The optima of types I to IV from Paper I are described fairly completely for the given class of games.
A class of convex optimal control problems involving linear hereditary systems with linear control constraints and nonlinear terminal constraints is considered. A result on the existence of an optimal control is proved and a necessary condition for optimality is given. An iterative algorithm is presented for solving the optimal control problem under consideration. The convergence property of the algorithm is also investigated. To test the algorithm, an example is solved.
The existence of stationary solutions to the MHD equations in three-dimensional bounded domains will be proved. At the same time if the assumption of smallness is made on external forces, uniqueness of the stationary solutions can be guaranteed and it can be shown that any Lr (r > 3) global bounded non-stationary solution to the MHD equations approaches the stationary solution under both L2 and Lr norms exponentially as time goes to infinity.
This paper is aimed at establishing sufficient computable criteria for the Euclidean null controllability of an infinite neutral differential system, when the controls are essentially bounded measurable functions on finite intervals, with values in a compact subset U of an m-dimensional Euclidean space with zero in its interior. Our results are obtained by exploiting the stability of the free system and the rank criterion for properness of the controlled system. An example is also given.
Existence of piecewise optimal control is proved when the cost function includes one or both of (a) a cost of sudden switching (discontinuity) of control variables, and (b) a cost associated with the maximum rate of variation of the control over segments of the path for which the control is continuous.
Sufficient conditions are obtained for the existence of a unique linearly asymptotically stable positive periodic solution of an ecosystem model of two species competition in a periodic environment with time lags in interspecific interactions. It is shown that if the self-regulating intraspecific interaction effects are strong enough and act without time delays then time delays of any length in the interspecific interactions cannot destabilise an otherwise stable ecosystem in a periodic environment.
By erecting a co-ordinate system tailored to the geometry of a cosmic string and examining the properties of the near gravitational field, it is possible to distinguish two types of gravitational waves supported by a general string metric. The first type, travelling waves, are completely decoupled from the curvature of the world sheet, whereas the second type, which I choose to call curvature waves, are generated in response to any non-trivial geometric structure on the string.
The endemicity of infectious diseases is investigated from a deterministic viewpoint. Sustained oscillation of infectives is often due to seasonal effects which may be related to climatic changes. For example the transmission of the measles virus by droplets is enhanced in cooler, more humid seasons. In many countries the onset of cooler, more humid weather coincides with the increased aggregation of people and the seasonal effect can be exacerbated. In this paper we consider non-autonomous compartmental epidemiological models and demonstrate that the critical community size phenomenon may be associated with the seasonal variation in the disease propagation. This approach is applicable to both the prevaccination phenomenon of critical community size and the current goal of worldwide elimination of measles by vaccination.
The perturbation of the eigenvalues of a regular Sturm–Liouville problem in normal form which results from a small perturbation of the coefficient function is known to be uniformly bounded. For numerical methods based on approximating the coefficients of the differential equation, this result is used to show that a better bound on the error is obtained when the problem is in normal form. A method having a uniform error bound is presented, and an extension of this method for general Sturm–Liouville problems is proposed and examined.
The change of impedance per unit length in a single or double conductor line situated parallel to an infinitely long two-layered metallic circular cylinder is found (within the quasistatic approximation) in the form of an infinite series. The cylinder consists of an inner core and an outer annulus. The properties of the inner core are assumed to be constant. The relative magnetic permeability, μ(r) = rα and the conductivity, σ(r) = σ(0)rκ, of the outer annulus vary with respect to the radial coordinate, r, and α and κ are arbitrary real numbers. Numerical results are presented in the form of figures and tables.
The classic problem, first treated by Taylor [18], of the dispersion of inert soluble matter in fluid flow continues to attract attention from researchers describing the approach to the asymptotic state [5, 17]. The present article considers some of the complications caused when the solute is chemically active, Dispersing chemically active solutes occur in diverse fields such as chromatography, chemical engineering and environmental fluid mechanics.
The asymptotic large-time analysis of Chatwin [5] is re-worked to handle the case of reactive solutes dispersing in parallel flow. Matching between moderate and large-time solutions requires consideration of the integral moments of the reactive contaminant could, and the Aris method of moments is therefore invoked and modified for reaction effects. The results are applied in detail to the outstanding paractical example—the chemical flow reactor (a device used to measure reaction rates for chemical reactions taking place between fluids). For this case, the paper provides a practical alternative to recent variable diffusion coefficient studies [6, 7, 15], and presents further results for the concentration distribution and for the limiting behaviour under weak and vigorous recactions at the boundary of the flow.
Using a mixed-type Fourier transform of a general form in the case of water of infinite depth and the method of eigenfunction expansion in the case of water of finite depth, several boundary-value problems involving the propagation and scattering of time harmonic surface water waves by vertical porous walls have been fully investigated, taking into account the effect of surface tension also. Known results are recovered either directly or as particular cases of the general problems under consideration.