To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present paper presents a ray analysis for a problem of technical importance in fragmentation studies. The problem is that of suddenly punching a circular hole in either isotropic or transversely isotropic plates subjected to a uniaxial tension field. The ray method, which involves only differentiation, integration, and simple algebra, is shown to be particularly useful in clarifying the propagation process of the resulting unloading waves and obtaining the attendant discontinuities of the various quantities involved. Numerical results obtained from the ray analysis are presented in graphical form and compared with those obtained by more elaborate schemes.
The flow caused by a point sink immersed in an otherwise stationary fluid is investigated. Low Froude number solutions are sought, in which the flow is radially symmetric and possesses a stagnation point at the surface, directly above the sink. A small-Froude-number expansion is derived and compared with the results of a numerical solution to the fully nonlinear problem. It is found that solutions of this type exist for all Froude numbers less than some maximum value, at which a secondary circular stagnation line is formed at the surface. The nonlinear solutions are reasonably well predicted by the small-Froude-number expansion, except for Froude numbers close to this maximum.
In this note, the weak duality theorem of symmetric duality in nonlinear programming and some related results are established under weaker (strongly Pseudo-convex/strongly Pseudo-concave) assumptions. These results were obtained by Bazaraa and Goode [1] under (stronger) convex/concave assumptions on the function.
We consider an optimization problem in which the function being minimized is the sum of the integral functional and the full variation of control. For this problem, we prove the existence theorem, a necessary condition in an integral form and a local necessary condition in the case of monotonic controls.
In this paper we propose a P1 finite element preconditioning using the so-called ‘hat-function’, to a collocation scheme constructed by quadratic splines for a 2nd-order separable elliptic operator and we show that the resulting preconditioning system of equations is well conditioned with the condition number independent of the number of unknowns.
Optimal control problems with switching costs arise in a number of applications, and are particularly important when standard control theory gives “chattering controls”. A numerical method is given for finding optimal controls for linear problems (linear dynamics, linear plus switching cost). This is used to develop an algorithm for finding sub-optimal control functions for nonlinear problems with switching costs. Numerical results are presented for an implementation of this method.
We consider a generalisation of the stochastic formulation of smoothing splines, and discuss the smoothness properties of the resulting conditional expectation (generalised smoothing spline), and the sensitivity of the numerical algorithms. One application is to the calculation of smoothing splines with less than the usual order of continuity at the data points.
In a paper which appeared in this journal, Manocha and Sharma [6] obtained some results of Carlitz [4], Halim and Salain [5] and generalized a few of them by using fractional derivatives. The present paper is concerned with some erroneous results of this paper [6]. Many more sums of the product of hypergeometric polynomials are also obtained.
A class of partially structured nonlinear programming problems, containing the capacitated nonlinear minimum cost multicommodity flow problem, is considered. Such problems, although large, can often be solved efficiently and with minimal computational storage by gradient projection methods.
A review of Heckmann and Schücking's formulation of Newtonian cosmology is presented, which permits the discussion of models more general than those possessing both homogeneity and isotropy. In particular it is shown that all homogeneous cosmologies may be uniquely specified by the rate of shear tensor as an arbitrary function of time and specifying arbitrary initial values for expansion, rotation and density. Perturbations of these models are now discussed, with a view to their possible implications for galaxy formation. The Jeans criterion is shown to hold in all these models, even in the presence of viscosity; this generalizes a result of Bonnor which only applied to the isotropic case. Furthermore, Bonnor's analysis is considerably simplified in the present paper. Finally, a WKB-type of approximation procedure is described which appears to be successful in estimating the growth rate of unstable fluctuations.
The calculation of flows in pipe networks and in networks of mine shafts and the calculations of the currents in electrical circuits can be represented as variational problems. There are two approaches: the nodal method and the loop method. There is a variational representation for each of these. This paper describes the relationship between the two representations and in particular shows that the loop formulation is the Wolfe dual of the nodal formulation after the application of Legendre transformations to the variables and to the objective function.
A canonical form of the self-adjoint Matrix Riccati Differential Equation with constant coefficients is obtained in terms of extremal solutions of the self-adjoint Matrix Riccati Algebraic (steady-state) Equations. This form is exploited in order to obtain a convenient explicit solution of the transient problem. Estimates of the convergence rate to the steady state are derived.
We introduce a generalized form of the Hankel transform, and study some of its properties. A partial differential equation associated with the problem of transport of a heavy pollutant (dust) from the ground level sources within the framework of the diffusion theory is treated by this integral transform. The pollutant concentration is expressed in terms of a given flux of dust from the ground surface to the atmosphere. Some special cases are derived.
A nutrient-consumer model involving a distributed delay in material recycling and a discrete delay in growth response has been analysed. Various easily verifiable sets of sufficient conditions for global asymptotic stability of the positive equilibrium solution of the model equations have been obtained and the length of the delay in each case has been estimated.
In Section 3, since relation (6) is valid only for n ≥ 2r, the condition n ≥ r in relation (9) should be replaced by n ≥ 2r. When r ≤ n ≤ 2r − 1, relation (9) still holds but now relations (6) and (7) should be replaced, respectively, by the relations
and
the asterisk again denoting omission of the last column. The proof of (9) for r ≤ n ≤ 2r − 1 is exactly similar to its proof for n ≥ 2r.
A numerical method for calculation of the generalized Chakalov-Popoviciu quadrature formulae of Radau and Lobatto type, using the results given for the generalized Chakalov-Popoviciu quadrature formula, is given. Numerical results are included. As an application we discuss the problem of approximating a function f on the finite interval I = [a, b] by a spline function of degree m and variable defects dv, with n (variable) knots, matching as many of the initial moments of f as possible. An analytic formula for the coefficients in the generalized Chakalov-Popoviciu quadrature formula is given.
A three stage procedure for the analysis and least-cost design of looped water distribution networks is considered in this paper. The first stage detects spanning trees and identifies the true global optimum for the system. The second stage determines hydraulically feasible pipe flows for the network by the numerical solution of a set of non-linear simultaneous equations and shows that these solutions are contained within closed convex polygonal regions in the solution space bounded by singularities resulting from zero flows in individual pipes. Ideal pipe diameters, consistent with the pipe flows and the constant velocity constraint adopted to prevent the system degenerating into a branched network, are selected and costed. It is found that the most favourable optimum is in the vicinity of a vertex in the solution space corresponding to the minimum spanning tree. In the third stage, commercial pipes are specified and the design finalised. Upper bound formulae for the number of spanning trees and hydraulically feasible solutions in a network have also been proposed. The treatment of large networks by a heuristic procedure is described which is shown to result in significant economies compared with designs obtained by non-linear programming.