We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A compact set K ⊂ ℝn is Whitney 1-regular if the geodesic distance in K is equivalent to the Euclidean distance. Let P be the Chevalley map defined by an integrity basis of the algebra of polynomials invariant by a reflection group. This paper gives the Whitney 1-regularity of the image by P of any closed ball centred at the origin. The proof uses the works of Givental', Kostov and Arnol'd on the symmetric group. It needs a generalization of a property of the Vandermonde determinants to the Jacobian of the Chevalley mappings.
We consider the problem of defining the structure of a smooth manifold on the various spaces of piecewise-smooth loops in a smooth finite-dimensional manifold. We succeed for a particular type of piecewise-smooth loops. We also examine the action of the diffeomorphism group of the circle. It is not a useful action on the manifold that we define. We consider how one might fix this problem and conclude that it can only be done by completing to the space of loops of bounded variation.
We study the variational problem for $N$-parallel curves on a Finsler surface by means of exterior differential systems using Griffiths’ method. We obtain the conditions when these curves are extremals of a length functional and write the explicit form of Euler–Lagrange equations for this type of variational problem.
We study properties of Sobolev-type metrics on the space of immersed plane curves. We show that the geodesic equation for Sobolev-type metrics with constant coefficients of order 2 and higher is globally well-posed for smooth initial data as well as for initial data in certain Sobolev spaces. Thus the space of closed plane curves equipped with such a metric is geodesically complete. We find lower bounds for the geodesic distance in terms of curvature and its derivatives.
It is well known that a system of homogeneous second-order ordinary differential equations (spray) is necessarily isotropic in order to be metrizable by a Finsler function of scalar flag curvature. In our main result we show that the isotropy condition, together with three other conditions on the Jacobi endomorphism, characterize sprays that are metrizable by Finsler functions of scalar flag curvature. We call these conditions the scalar flag curvature (SFC) test. The proof of the main result provides an algorithm to construct the Finsler function of scalar flag curvature, in the case when a given spray is metrizable. Hilbert’s fourth problem asks to determine the Finsler functions with rectilinear geodesics. A Finsler function that is a solution to Hilbert’s fourth problem is necessarily of constant or scalar flag curvature. Therefore, we can use the constant flag curvature (CFC) test, which we developed in our previous paper, Bucataru and Muzsnay [‘Sprays metrizable by Finsler functions of constant flag curvature’, Differential Geom. Appl.31 (3)(2013), 405–415] as well as the SFC test to decide whether or not the projective deformations of a flat spray, which are isotropic, are metrizable by Finsler functions of constant or scalar flag curvature. We show how to use the algorithms provided by the CFC and SFC tests to construct solutions to Hilbert’s fourth problem.
We define an analytic index and prove a topological index theorem for a non-compact manifold M0 with poly-cylindrical ends. Our topological index theorem depends only on the principal symbol, and establishes the equality of the topological and analytical index in the group K0(C*(M)), where C*(M) is a canonical C*-algebra associated to the canonical compactification M of M0. Our topological index is thus, in general, not an integer, unlike the usual Fredholm index appearing in the Atiyah–Singer theorem, which is an integer. This will lead, as an application in a subsequent paper, to the determination of the K-theory groups K0(C*(M))of the groupoid C*-algebra of the manifolds with corners M. We also prove that an elliptic operator P on M0 has an invertible perturbation P+R by a lower-order operator if and only if its analytic index vanishes.
In this paper, we review the parametrized strict deformation quantization of C*-bundles obtained in a previous paper, and give more examples and applications of this theory. In particular, it is used here to classify H3-twisted noncommutative torus bundles over a locally compact space. This is extended to the case of general torus bundles and their parametrized strict deformation quantization. Rieffel’s basic construction of an algebra deformation can be mimicked to deform a monoidal category, which deforms not only algebras but also modules. As a special case, we consider the parametrized strict deformation quantization of Hilbert C*-modules over C*-bundles with fibrewise torus action.
In this paper, we introduce a new algebraic notion, weakly symmetric Lie algebras, to give an algebraic description of an interesting class of homogeneous Riemann-Finsler spaces, weakly symmetric Finsler spaces. Using this new definition, we are able to give a classification of weakly symmetric Finsler spaces with dimensions 2 and 3. Finally, we show that all the non-Riemannian reversible weakly symmetric Finsler spaces we find are non-Berwaldian and with vanishing $\text{S}$-curvature. This means that reversible non-Berwaldian Finsler spaces with vanishing $\text{S}$-curvature may exist at large. Hence the generalized volume comparison theorems due to $\text{Z}$. Shen are valid for a rather large class of Finsler spaces.
A hermitian algebra is a unital associative ℂ-algebra endowed with an involution such that the spectra of self-adjoint elements are contained in ℝ. In the case of an algebra 𝒜 endowed with a Mackey-complete, locally convex topology such that the set of invertible elements is open and the inversion mapping is continuous, we construct the smooth structures on the appropriate versions of flag manifolds. Then we prove that if such a locally convex algebra 𝒜 is endowed with a continuous involution, then it is a hermitian algebra if and only if the natural action of all unitary groups Un(𝒜) on each flag manifold is transitive.
Given a Lie n-algebra, we provide an explicit construction of its integrating Lie n-group. This extends work done by Getzler in the case of nilpotent -algebras. When applied to an ordinary Lie algebra, our construction yields the simplicial classifying space of the corresponding simply connected Lie group. In the case of the string Lie 2-algebra of Baez and Crans, we obtain the simplicial nerve of their model of the string group.
In this note we show that the crucial orientation condition forcommutative geometries fails for the natural commutative spectral triple of an orbifold M/G.