To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let X be either the d-dimensional sphere or a compact, simply connected, simple, connected Lie group. We define a mean-value operator analogous to the spherical mean-value operator acting on integrable functions on Euclidean space. The value of this operator will be written as ℳ f (x, a), where x ∈ X and a varies over a torus A in the group of isometries of X. For each of these cases there is an interval pO < p ≦ 2, where the p0 depends on the geometry of X, such that if f is in Lp (X) then there is a set full measure in X and if x lies in this set, the function a ↦ℳ f(x, a) has some Hölder continuity on compact subsets of the regular elements of A.
Let G/K be a compact symmetric space, and let G = KAK be a Cartan decomposition of G. For f in L1(G) we define the spherical means f(g, t) = ∫k∫k ∫(gktk′) dk dk′, g ∈ G, t ∈ A. We prove that if f is in Lp(G), 1 ≤ p ≤ 2, then for almost every g ∈ G the functions t → f(g, t) belong to certain Soblev spaces on A. From these regularity results for the spherical means we deduce, if G/K is a compact rank one symmetric space, a theorem on the almost everywhere localization of spherical harmonic expansions of functions in L2 (G/K).