We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We complete the investigation of growth properties of analytic functions connected with the Nevanlinna parametrization of the solutions of an indeterminate strong Hamburger moment problem.
Near exact Banach frames are introduced and studied, and examples demonstrating the existence of near exact Banach frames are given. Also, a sufficient condition for a Banach frame to be near exact is obtained. Further, we consider block perturbation of retro Banach frames, and prove that a block perturbation of a retro Banach frame is also a retro Banach frame. Finally, it is proved that if E and F are both Banach spaces having Banach frames, then the product space E×F has an exact Banach frame.
Several rather general sufficient conditions for the extrapolation of the calculus of generalized Dirac operators from L2 to Lp are established. As consequences, we obtain some embedding theorems, quadratic estimates and Littlewood–Paley theorems in terms of this calculus in Lebesgue spaces. Some further generalizations, utilised in Part II devoted to applications, which include the Kato square root model, are discussed. We use resolvent approach and show the irrelevance of the semigroup one. Auxiliary results include a high order counterpart of the Hilbert identity, the derivation of new forms of ‘off-diagonal’ estimates, and the study of the structure of the model in Lebesgue spaces and its interpolation properties. In particular, some coercivity conditions for forms in Banach spaces are used as a substitution of the ellipticity ones. Attention is devoted to the relations between the properties of perturbed and unperturbed generalized Dirac operators. We do not use any stability results.
We formulate a localization property of wavelet coefficients for processes with stationary increments, in the estimation problem associated with the processes. A general setting for the estimation is adopted and examples that fit this setting are given. An evaluation of wavelet coefficient decay with respect to shift k∈ℕ is explicitly derived (only the asymptotic behavior, for large k, was previously known). It is this evaluation that makes it possible to establish the localization property of the wavelet coefficients. In doing so, it turns out that the theory of positive-definite functions plays an important role. As applications, we show that, in the wavelet coefficient domain, estimators that use a simple moment method are nearly as good as maximum likelihood estimators. Moreover, even though the underlying process is long-range dependent and process domain estimates imply the validity of a noncentral limit theorem, for the wavelet coefficient domain estimates we always obtain a central limit theorem with a small prescribed error.
We show that the operator-valued Marcinkiewicz and Mikhlin Fourier multiplier theorem are valid if and only if the underlying Banach space is isomorphic to a Hilbert space.
There are standard modifications of certain compactly supported wavelets that yield orthonormal bases on a bounded interval. We extend one such construction to those wavelets, such as ‘coiflets', that may have fewer vanishing moments than had to be assumed previously. Our motivation lies in function estimation in statistics. We use these boundary-modified coiflets to show that the discrete wavelet transform of finite data from sampled regression models asymptotically provides a close approximation to the wavelet transform of the continuous Gaussian white noise model. In particular, estimation errors in the discrete setting of computational practice need not be essentially larger than those expected in the continuous setting of statistical theory.
Calderón type reproducing formulae with applications have been studied on one- and higher-dimensional Lipschitz graphs. In this note we study higher order Calderón reproducing formulae on star-shaped and non-star-shaped closed Lipschitz curves and surfaces.
It is shown that the discrete fractional Fourier transform recovers the continuum fractional Fourier transform via a limiting process whereby inner products are preserved.
Let be the classical system of the Walsh functions, the multiplicative semigroup of the functions represented by series of functions Wk(t)with non-negative coefficients which sum equals 1. We study the arithmetic of . The analogues of the well-known [ related to the arithmetic of the convolution semigroup of probability measures on the real line are valid in . The classes of idempotent elements, of infinitely divisible elements, of elements without indecomposable factors, and of elements without indecomposable and non-degenerate idempotent factors are completely described. We study also the class of indecomposable elements. Our method is based on the following fact: is isomorphic to the semigroup of probability measures on the groups of characters of the Cantor-Walsh group.
We discuss expansions of solutions of the generalized heat equation which have a singularity at zero in terms of two sequences of homogeneous solutions.
We prove that if u(x, t) is a solution of the one dimensional heat equation and if A u(x, t) is its Appell transform, then u(x, t) has the semi-group (Huygens) property in a domain D if and only if A u(x, t) has the semi-group property in a dual region. We apply this result to simplify and extend some results of Rosenbloom and Widder.
General expressions are found for the orthonormal polynomials and the kernels relative to measures on the real line of the form μ + Mδc, in terms of those of the measures dμ and (x − c)2dμ. In particular, these relations allow us to show that Nevai's class M(0, 1) is closed under adding a mass point, as well as obtain several bounds for the polynomials and kernels relative to a generalized Jacobi weight with a finite number of mass points.
Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn}, where µ0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ < μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that limn→∞λn = λ and limn→∞µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.
We extend in different ways the class of null sequences of real numbers that are of bounded variation and study the Walsh-Fourier series of integrable functions on the interval [(0, 1) with such coefficients. We prove almost everywhere convergence as well as convergence in the pseu dometric of Lr(0, 1) for 0 < r < 1.
The aim of this paper is to study the spherical functions associated to an operator. These functions can be thought of abstractly as being eigenfunctions of the operator which can be expressed in terms of the operator. The meaning of these properties will be made precise as will a notion of boundedness. The results are obtained by studying a specific shift operator on the algebra of functionals on the complex polynomial ring. For the class studied, we obtain ellipses of eigenvalues for which there exist bounded spherical functions. As an application of the results, we study radial functions on discrete groups.
Various criteria, in terms of forward differences and related operations on coefficients, are shown to imply that certain series on bounded Vilenkin groups represent integrable functions. These results include analogues of known integrability theorems for trigonometric series. The method of proof is to pass from the given series to a derived series, and to deduce the integrability of the original series from smoothness properties of the latter.
Let X be either the d-dimensional sphere or a compact, simply connected, simple, connected Lie group. We define a mean-value operator analogous to the spherical mean-value operator acting on integrable functions on Euclidean space. The value of this operator will be written as ℳ f (x, a), where x ∈ X and a varies over a torus A in the group of isometries of X. For each of these cases there is an interval pO < p ≦ 2, where the p0 depends on the geometry of X, such that if f is in Lp (X) then there is a set full measure in X and if x lies in this set, the function a ↦ℳ f(x, a) has some Hölder continuity on compact subsets of the regular elements of A.
Let G/K be a compact symmetric space, and let G = KAK be a Cartan decomposition of G. For f in L1(G) we define the spherical means f(g, t) = ∫k∫k ∫(gktk′) dk dk′, g ∈ G, t ∈ A. We prove that if f is in Lp(G), 1 ≤ p ≤ 2, then for almost every g ∈ G the functions t → f(g, t) belong to certain Soblev spaces on A. From these regularity results for the spherical means we deduce, if G/K is a compact rank one symmetric space, a theorem on the almost everywhere localization of spherical harmonic expansions of functions in L2 (G/K).