We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the cyclic and epicyclic categories which play a key role in the encoding of cyclic homology and the lambda operations, are obtained from projective geometry in characteristic one over the infinite semifield of max-plus integers ℤmax. Finite-dimensional vector spaces are replaced by modules defined by restriction of scalars from the one-dimensional free module, using the Frobenius endomorphisms of ℤmax. The associated projective spaces are finite and provide a mathematically consistent interpretation of Tits's original idea of a geometry over the absolute point. The self-duality of the cyclic category and the cyclic descent number of permutations both acquire a geometric meaning.
In this paper, we prove that cyclic homology, topological cyclic homology, and algebraic $K$-theory satisfy a pro Mayer–Vietoris property with respect to abstract blow-up squares of varieties, in both zero and finite characteristic. This may be interpreted as the well-definedness of $K$-theory with compact support.
We show how a theorem of Gabber on alterations can be used to apply the work of Cisinski, Suslin, Voevodsky, and Weibel to prove that $K_n(X) \otimes \mathbb{Z}[{1}/{p}]= 0$ for$n < {-}\! \dim X$ where $X$ is a quasi-excellent noetherian scheme, $p$ is a prime that is nilpotent on $X$, and $K_n$ is the $K$-theory of Bass–Thomason–Trobaugh. This gives a partial answer to a question of Weibel.
Let $k$ be a base commutative ring, $R$ a commutative ring of coefficients, $X$ a quasi-compact quasi-separated $k$-scheme, and $A$ a sheaf of Azumaya algebras over $X$ of rank $r$. Under the assumption that $1/r\in R$, we prove that the noncommutative motives with $R$-coefficients of $X$ and $A$ are isomorphic. As an application, we conclude that a similar
isomorphism holds for every $R$-linear additive invariant. This leads to several computations.
Along the way we show that, in the case of finite-dimensional algebras of finite
global dimension, all additive invariants are nilinvariant.
This paper studies ‘pro-excision’ for the $K$-theory of one-dimensional, usually semi-local, rings and its
various applications. In particular, we prove Geller’s conjecture for equal
characteristic rings over a perfect field of finite characteristic, give results
towards Geller’s conjecture in mixed characteristic, and we establish various
finiteness results for the $K$-groups of singularities, covering both orders in number fields and
singular curves over finite fields.
We show how the techniques of Voevodsky’s proof of the Milnor conjecture and the Voevodsky–Rost proof of its generalization the Bloch–Kato conjecture can be used to study counterexamples to the classical Lüroth problem. By generalizing a method due to Peyre, we produce for any prime number $\ell $ and any integer $n\geq 2$, a rationally connected, non-rational variety for which non-rationality is detected by a non-trivial degree $n$ unramified étale cohomology class with $\ell $-torsion coefficients. When $\ell = 2$, the varieties that are constructed are furthermore unirational and non-rationality cannot be detected by a torsion unramified étale cohomology class of lower degree.
In this article we prove that Kontsevich’s category NCnum(k)F of noncommutative numerical motives is equivalent to the one constructed by the authors in [Marcolli and Tabuada, Noncommutative motives, numerical equivalence, and semisimplicity, Amer. J. Math., to appear, available at arXiv:1105.2950]. As a consequence, we conclude that NCnum(k)F is abelian semi-simple as conjectured by Kontsevich.
In this article, we further the study of higher K-theory of differential graded (dg) categories via universal invariants, initiated in [G. Tabuada, Higher K-theory via universal invariants, Duke Math. J. 145 (2008), 121–206]. Our main result is the co-representability of non-connective K-theory by the base ring in the ‘universal localizing motivator’. As an application, we obtain for free higher Chern characters, respectively higher trace maps, from non-connective K-theory to cyclic homology, respectively to topological Hochschild homology.
We describe explicitly the continuous Hochschild and cyclic cohomology groups of certain tensor products of -algebras which are Fréchet spaces or nuclear DF-spaces. To this end we establish the existence of topological isomorphisms in the Künneth formula for the cohomology of complete nuclear DF-complexes and in the Künneth formula for continuous Hochschild cohomology of nuclear -algebras which are Fréchet spaces or DF-spaces for which all boundary maps of the standard homology complexes have closed ranges.
We describe explicitly the Voevodsky's triangulated category of motives (and give a ‘differential graded enhancement’ of it). This enables us to able to verify that DMgm ℚ is (anti)isomorphic to Hanamura's (k).
We obtain a description of all subcategories (including those of Tate motives) and of all localizations of . We construct a conservative weight complex functor ; t gives an isomorphism . A motif is mixed Tate whenever its weight complex is. Over finite fields the Beilinson–Parshin conjecture holds if and only if tℚ is an equivalence.
For a realization D of we construct a spectral sequence S (the spectral sequence of motivic descent) converging to the cohomology of an arbitrary motif X. S is ‘motivically functorial’; it gives a canonical functorial weight filtration on the cohomology of D(X). For the ‘standard’ realizations this filtration coincides with the usual one (up to a shift of indices). For the motivic cohomology this weight filtration is non-trivial and appears to be quite new.
We define the (rational) length of a motif M; modulo certain ‘standard’ conjectures this length coincides with the maximal length of the weight filtration of the singular cohomology of M.