To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We analyze the smoothing effect of superposing homogeneous sources in a network. We consider a tandem queueing network representing the nodes that customers generated by these sources pass through. The servers in the tandem queues have different time varying service rates. In between the tandem queues there are propagation delays. We show that for arbitrary arrival and service processes which are mutually independent, the sum of unfinished works in the tandem queues is monotone in the number of homogeneous sources in the increasing convex order sense, provided the total intensity of the foreground traffic is constant. The results hold for both fluid and discrete traffic models.
We argue the importance both of developing simple sufficient conditions for the stability of general multiclass queueing networks and also of assessing such conditions under a range of assumptions on the weight of the traffic flowing between service stations. To achieve the former, we review a peak-rate stability condition and extend its range of application and for the latter, we introduce a generalisation of the Lu–Kumar network on which the stability condition may be tested for a range of traffic configurations. The peak-rate condition is close to exact when the between-station traffic is light, but degrades as this traffic increases.
This paper studies the connection between the dynamical and equilibrium behaviour of large uncontrolled loss networks. We consider the behaviour of the number of calls of each type in the network, and show that, under the limiting regime of Kelly (1986), all trajectories of the limiting dynamics converge to a single fixed point, which is necessarily that on which the limiting stationary distribution is concentrated. The approach uses Lyapunov techniques and involves the evolution of the transition rates of a stationary Markov process in such a way that it tends to reversibility.
The authors prove that certain reliability formulas which link asymptotic availability, mean normal operation time, mean time between failures, mean number of failures over a period of time and asymptotic Vesely rate, and which are well known in the case of modelling using a Markov jump process or an alternating renewal process, are also true in the context of more general modelling.
We consider a network traffic model consisting of an infinite number of sources linked to a server. Sources initiate transmissions to the server at Poisson time points. The duration of each transmission has a heavy-tailed distribution. We show that suitable scalings of the traffic process converge to a totally skewed stable Lévy motion in Skorohod space, equipped with the Skorohod M1 topology. This allows us to prove a heavy-traffic theorem for a single-server fluid model.
Nash's generalization of Gittins’ classic index result to so-called generalized bandit problems (GBPs) in which returns are dependent on the states of all arms (not only the one which is pulled) has proved important for applications. The index theory for special cases of this model in which all indices are positive is straightforward. However, this is not a natural restriction in practice. An earlier proposal for the general case did not yield satisfactory index-based suboptimality bounds for policies — a central feature of classical Gittins index theory. We develop such bounds via a notion of duality for GBPs which is of independent interest. The index which emerges naturally from this analysis is the reciprocal of the one proposed by Nash.
We study the following stochastic investment model: opportunities occur randomly over time, following a renewal process with mean interarrival time d, and at each of them the decision-maker can choose a distribution for an instantaneous net gain (or loss) from the set of all probability measures that have some prespecified expected value e and for which his maximum possible loss does not exceed his current capital. Between the investments he spends money at some constant rate. The objective is to avoid bankruptcy as long as possible. For the case e>d we characterize a strategy maximizing the probability that ruin never occurs. It is proved that the optimal value function is a concave function of the initial capital and uniquely determined as the solution of a fixed point equation for some intricate operator. In general, two-point distributions suffice; furthermore, we show that the cautious strategy of always taking the deterministic amount e is optimal if the interarrival times are hyperexponential, and, in the case of bounded interarrival times, is optimal ‘from some point on’, i.e. whenever the current capital exceeds a certain threshold. In the case e = 0 we consider a class of natural objective functions for which the optimal strategies are non-stationary and can be explicitly determined.
We consider a multiserver queue in the heavy-traffic regime introduced and studied by Halfin and Whitt who investigated the case of a single customer class with exponentially distributed service times. Our purpose is to extend their analysis to a system with multiple customer classes, priorities, and phase-type service distributions. We prove a weak convergence limit theorem showing that a properly defined and normalized queue length process converges to a particular K-dimensional diffusion process, where K is the number of phases in the service time distribution. We also show that a properly normalized waiting time process converges to a simple functional of the limit diffusion for the queue length.
Minimal repairs have been given considerable attention in the reliability literature. Instead of replacing a failed system by a new one, such a minimal repair restores the system to the state it had just before failure. But the state just before failure depends on the information which is available about the system. Different information levels are possible. This paper gives a general definition characterizing point processes which describe time points of minimal repairs with respect to a certain information level. Some examples demonstrate the wide range of applications.
We consider a fluid model similar to that of Kella and Whitt [32], but with a buffer having finite capacity K. The connections between the infinite buffer fluid model and the G/G/1 queue established by Kella and Whitt are extended to the finite buffer case: it is shown that the stationary distribution of the buffer content is related to the stationary distribution of the finite dam. We also derive a number of new results for the latter model. In particular, an asymptotic expansion for the loss fraction is given for the case of subexponential service times. The stationary buffer content distribution of the fluid model is also related to that of the corresponding model with infinite buffer size, by showing that the two corresponding probability measures are proportional on [0,K) if the silence periods are exponentially distributed. These results are applied to obtain large buffer asymptotics for the loss fraction and the mean buffer content when the fluid queue is fed by N On-Off sources with subexponential on-periods. The asymptotic results show a significant influence of heavy-tailed input characteristics on the performance of the fluid queue.
We consider a fluid queue fed by a superposition of a finite number of On/Off sources, the distribution of the On period being subexponential for some of them and exponential for the others. We provide general lower and upper bounds for the tail of the stationary buffer content distribution in terms of the so-called minimal subsets of sources. We then show that this tail decays at exponential or subexponential speed according as a certain parameter is smaller or larger than the ouput rate. If we replace the subexponential tails by regularly varying tails, the upper bound and the lower bound are sharp in that they differ only by a multiplicative factor.
This work presents an estimate of the error on a cumulative reward function until the entrance time of a continuous-time Markov chain into a set, when the infinitesimal generator of this chain is perturbed. The derivation of an error bound constitutes the first part of the paper while the second part deals with an application where the time until saturation is considered for a circuit switched network which starts from an empty state and which is also subject to possible failures.
We prove a new heavy traffic limit result for a simple queueing network under a ‘join the shorter queue’ policy, with the amount of traffic which has a routeing choice tending to zero as heavy traffic is approached. In this limit, the system considered does not exhibit state space collapse as in previous work by Foschini and Salz, and Reiman, but there is nevertheless some resource pooling gain over a policy of random routeing.
We consider the optimal stochastic scheduling of a two-stage tandem queue with two parallel servers. The servers can serve either queue at any point in time and the objective is to minimize the total holding costs incurred until all jobs leave the system. We characterize sufficient and necessary conditions under which it is optimal to allocate both servers to the upstream or downstream queue. We then conduct a numerical study to investigate whether the results shown for the static case also hold for the dynamic case. Finally, we provide a numerical study that explores the benefits of having two flexible parallel servers which can work at either queue versus servers dedicated to each queue. We discuss the results' implications for cross-training workers to perform multiple tasks.
For systems subject to inspections at Poisson random times, we present an analytic method which gives upper and lower bounds for the reliability. We also study its asymptotic behaviour and derive the asymptotic failure rate.
The convergence to equilibrium of the renormalized M/M/N/N queue is analysed. Upper bounds on the distance to equilibrium are obtained and the cut-off property for two regimes of this queue is proved. Simple probabilistic methods, such as coupling techniques and martingales, are used to obtain these results.
In this paper, we consider a certain class of Markov renewal processes where the matrix of the transition kernel governing the Markov renewal process possesses some block-structured property, including repeating rows. Duality conditions and properties are obtained on two probabilistic measures which often play a key role in the analysis and computations of such a block-structured process. The method used here unifies two different concepts of duality. Applications of duality are also provided, including a characteristic theorem concerning recurrence and transience of a transition matrix with repeating rows and a batch arrival queueing model.
We compare distributions of residual lifetimes of dependent components of different age. This approach yields several notions of multivariate ageing. A special feature of our notions is that they are based on one-dimensional stochastic comparisons. Another difference from the traditional approach is that we do not condition on different histories.
We study a service system with a fixed upper bound for its workload and two independent inflows of customers: frequent ‘small’ ones and occasional ‘large’ ones. The workload process generated by the small customers is modelled by a Brownian motion with drift, while the arrival times of the large customers form a Poisson process and their service times are exponentially distributed. The workload process is reflected at zero and at its upper capacity bound. We derive the stationary distribution of the workload and several related quantities and compute various important characteristics of the system.
A k-out-of-n system consisting of n components is one that works if and only if at least k of the n components work. Suppose there are n+r (1 ≤ r ≤ n) components available of which r will be used for active redundancy. From the given n+r components, r components are chosen to be used as active redundancies, and another r components receive active redundancies (i.e. these r components are bolstered). Consider a k-out-of-n system consisting of the r bolstered and the other n – r original components. The problem of which r components should be used for active redundancy, and where to allocate them in order to maximize the lifetime of the resulting k-out-of-n system is studied. It is shown that under the usual stochastic ordering ‘≤st’ the first r weakest components should be used for active redundancy and allocated in reverse order to the next r weakest components.