To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The leaky bucket is a flow control mechanism that is designed to reduce the effect of the inevitable variability in the input stream into a node of a communication network. In this paper we study what happens when an input stream with heavy-tailed work sessions arrives to a server protected by such a leaky bucket. Heavy-tailed sessions produce long-range dependence in the input stream. Previous studies of single server fluid queues without flow control suggested that such long-range dependence can have a dramatic effect on the system performance. By concentrating on the expected time till overflow of a large finite buffer we show that leaky-bucket flow control does make the system overflow less often, but long-range dependence still makes its presence felt.
In this paper, an inspection–repair–replacement (IRR) model for a deteriorating system with unobservable state is studied. Assume that the system state can only be diagnosed by inspection and an inspection is imperfect. After inspection, if the system is diagnosed as being in a down state, a minimal repair will be undertaken, otherwise we do nothing. Assume further that the system lifetime is a random variable having increasing failure rate. A feasible IRR policy is studied. An algorithm is then suggested for determining an optimal feasible IRR policy for minimizing the long-run average cost per unit time after a finite-step search.
In this paper we derive conditions on the internal wear process under which the resulting time to failure model will be of the simple collapsible form when the usage accumulation history is available. We suppose that failure occurs when internal wear crosses a certain threshold or a traumatic event causes the item to fail. We model the infinitesimal increment in internal wear as a function of time, accumulated internal wear, and usage history, and we derive conditions on this function to get a collapsible model for the distribution of time to failure given the usage history. We reach the conclusion that collapsible models form the subset of accelerated failure time models with time-varying covariates for which the time transformation function satisfies certain simple properties.
We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic flows are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for achieving service differentiation in integrated networks. We derive the asymptotic workload behaviour of the light-tailed traffic flow under the assumption that its GPS weight is larger than its traffic intensity. The GPS mechanism ensures that the workload is bounded above by that in an isolated system with the light-tailed flow served in isolation at a constant rate equal to its GPS weight. We show that the workload distribution is, in fact, asymptotically equivalent to that in the isolated system, multiplied by a certain prefactor, which accounts for the interaction with the heavy-tailed flow. Specifically, the prefactor represents the probability that the heavy-tailed flow is backlogged long enough for the light-tailed flow to reach overflow. The results provide crucial qualitative insight in the typical overflow scenario.
We determine the exact large-buffer asymptotics for a mixture of light-tailed and heavy-tailed input flows. Earlier studies have found a ‘reduced-load equivalence’ in situations where the peak rate of the heavy-tailed flows plus the mean rate of the light-tailed flows is larger than the service rate. In that case, the workload is asymptotically equivalent to that in a reduced system, which consists of a certain ‘dominant’ subset of the heavy-tailed flows, with the service rate reduced by the mean rate of all other flows. In the present paper, we focus on the opposite case where the peak rate of the heavy-tailed flows plus the mean rate of the light-tailed flows is smaller than the service rate. Under mild assumptions, we prove that the workload distribution is asymptotically equivalent to that in a somewhat ‘dual’ reduced system, multiplied by a certain prefactor. The reduced system now consists of only the light-tailed flows, with the service rate reduced by the peak rate of the heavy-tailed flows. The prefactor represents the probability that the heavy-tailed flows have sent at their peak rate for more than a certain amount of time, which may be interpreted as the ‘time to overflow’ for the light-tailed flows in the reduced system. The results provide crucial insight into the typical overflow scenario.
The iteration of random tessellations in ℝd is considered, where each cell of an initial tessellation is further subdivided into smaller cells by so-called component tessellations. Sufficient conditions for stationarity and isotropy of iterated tessellations are given. Formulae are derived for the intensities of their facet processes, and for the expected intrinsic volumes of their typical facets. Particular emphasis is put on two special cases: superposition and nesting of tessellations. Bernoulli thinning of iterated tessellations is also considered.
In this paper, we consider a single-server queue with stationary input, where each job joining the queue has an associated deadline. The deadline is a time constraint on job sojourn time and may be finite or infinite. If the job does not complete service before its deadline expires, it abandons the queue and the partial service it may have received up to that point is wasted. When the queue operates under a first-come-first served discipline, we establish conditions under which the actual workload process—that is, the work the server eventually processes—is unstable, weakly stable, and strongly stable. An interesting phenomenon observed is that in a nontrivial portion of the parameter space, the queue is weakly stable, but not strongly stable. We also indicate how our results apply to other nonidling service disciplines. We finally extend the results for a single node to acyclic (feed-forward) networks of queues with either per-queue or network-wide deadlines.
We consider polling systems with mixtures of exhaustive and gated service in which the server visits the queues periodically according to a general polling table. We derive exact expressions for the steady-state delay incurred at each of the queues under standard heavy-traffic scalings. The expressions require the solution of a set of only M—N linear equations, where M is the length of the polling table and N is the number of queues, but are otherwise explicit. The equations can even be expressed in closed form for several routeing schemes commonly used in practice, such as the star and elevator visit order, in a general parameter setting. The results reveal a number of asymptotic properties of the behavior of polling systems. In addition, the results lead to simple and fast approximations for the distributions and the moments of the delay in stable polling systems with periodic server routeing. Numerical results demonstrate that the approximations are highly accurate for medium and heavily loaded systems.
We consider the policy in a finite dam in which the input of water is formed by a compound Poisson process and the rate of water release is changed instantaneously from a to M and from M to a (M > a) at the moments when the level of water exceeds λ and downcrosses τ (λ > τ) respectively. After assigning costs to the changes of release rate, a reward to each unit of output, and a cost related to the level of water in the reservoir, we determine the long-run average cost per unit time.
We introduce a new class of lifetime distributions exhibiting a notion of positive ageing, called the ℳ-class, which is strongly related to the well-known ℒ-class. It is shown that distributions in the ℳ-class cannot have an undesirable property recently observed in an example of an ℒ-class distribution by Klar (2002). Moreover, it is shown how these and related classes of life distributions can be characterized by expected remaining lifetimes after a family of random times, thus extending the notion of NBUE. We give examples of ℳ-class distributions by using simple sufficient conditions, and we derive reliability bounds for distributions in this class.
For multiple-server finite-buffer systems with batch Poisson arrivals, we explore how the distribution of the number of losses during a busy period changes with the buffer size and the initial number of customers. We show that when the arrival rate equals the maximal service rate (ρ = 1), as the buffer size increases the number of losses in a busy period increases in the convex sense, and when ρ > 1, as the buffer size increases the number of busy period losses increases in the increasing convex sense. Also, the number of busy period losses is stochastically increasing in the initial number of customers. A consequence of our results is that, when ρ = 1, the mean number of busy period losses equals the mean batch size of arrivals regardless of the buffer size. We show that this invariance does not extend to general arrival processes.
We consider a multiarmed bandit problem, where each arm when pulled generates independent and identically distributed nonnegative rewards according to some unknown distribution. The goal is to maximize the long-run average reward per pull with the restriction that any previously learned information is forgotten whenever a switch between arms is made. We present several policies and a peculiarity surrounding them.
We consider a failure-prone system which operates in continuous time and is subject to condition monitoring at discrete time epochs. It is assumed that the state of the system evolves as a continuous-time Markov process with a finite state space. The observation process is stochastically related to the state process which is unobservable, except for the failure state. Combining the failure information and the information obtained from condition monitoring, and using the change of measure approach, we derive a general recursive filter, and, as special cases, we obtain recursive formulae for the state estimation and other quantities of interest. Up-dated parameter estimates are obtained using the EM algorithm. Some practical prediction problems are discussed and an illustrative example is given using a real dataset.
We consider a system with a finite state space subject to continuous-time Markovian deterioration while running that leads to failure. Failures are instantaneously detected. This system is submitted to sequential checking and preventive maintenance: up states are divided into ‘good’ and ‘degraded’ ones and the system is sequentially checked through perfect and instantaneous inspections until it is found in a degraded up state and stopped to allow maintenance (or until it fails). Time between inspections is random and is chosen at each inspection according to the current degradation degree of the system. Markov renewal equations fulfilled by the reliability of the maintained system are given and an exponential equivalent is derived for the reliability. We prove the existence of an asymptotic failure rate for the maintained system, which we are able to compute. Sufficient conditions are given for the preventive maintenance policy to improve the reliability and the asymptotic failure rate of the system. A numerical example illustrates our study.
The usual concept of asymptotic independence, as discussed in the context of extreme value theory, requires the distribution of the coordinatewise sample maxima under suitable centering and scaling to converge to a product measure. However, this definition is too broad to conclude anything interesting about the tail behavior of the product of two random variables that are asymptotically independent. Here we introduce a new concept of asymptotic independence which allows us to study the tail behavior of products. We carefully discuss equivalent formulations of asymptotic independence. We then use the concept in the study of a network traffic model. The usual infinite source Poisson network model assumes that sources begin data transmissions at Poisson time points and continue for random lengths of time. It is assumed that the data transmissions proceed at a constant, nonrandom rate over the entire length of the transmission. However, analysis of network data suggests that the transmission rate is also random with a regularly varying tail. So, we modify the usual model to allow transmission sources to transmit at a random rate over the length of the transmission. We assume that the rate and the time have finite mean, infinite variance and possess asymptotic independence, as defined in the paper. We finally prove a limit theorem for the input process showing that the centered cumulative process under a suitable scaling converges to a totally skewed stable Lévy motion in the sense of finite-dimensional distributions.
This paper studies inspected systems with non-self-announcing failures where the rate of deterioration is governed by a Markov chain. We compute the lifetime distribution and availability when the system is inspected according to a periodic inspection policy. In doing so, we expose the role of certain transient distributions of the environment.
The paper concerns a class of discounted restless bandit problems which possess an indexability property. Conservation laws yield an expression for the reward suboptimality of a general policy. These results are utilised to study the closeness to optimality of an index policy for a special class of simple and natural dual speed restless bandits for which indexability is guaranteed. The strong performance of the index policy is confirmed by a computational study.
Often in the study of reliability and its applications, the goal is to maximize or minimize certain reliability characteristics or some cost functions. For example, burn-in is a procedure used to improve the quality of products before they are used in the field. A natural question which arises is how long the burn-in procedure should last in order to maximize the mean residual life or the conditional survival probability. In the literature, an upper bound for the optimal burn-in time is obtained by assuming that the underlying distribution of the products has a bathtub-shaped failure rate function; however, no lower bound is available. A similar question arises in studying replacement policy, warranty policy, and inspection models. This article gives a lower bound for the optimal burn-in time, and lower and upper bounds for the optimal replacement and warranty policies, under the same bathtub-shape assumption.
An important class of queueing networks is characterized by the following feature: in contrast with ordinary units, a disaster may remove all work from the network. Applications of such networks include computer networks with virus infection, migration processes with mass exodus and serial production lines with catastrophes. In this paper, we deal with a two-stage tandem queue with blocking operating under the presence of a secondary flow of disasters. The arrival flows of units and disasters are general Markovian arrival processes. Using spectral analysis, we determine the stationary distribution at departure epochs. That distribution enables us to derive the distribution of the number of units which leave the network at a disaster epoch. We calculate the stationary distribution at an arbitrary time and, finally, we give numerical results and graphs for certain probabilistic descriptors of the network.
Consider a ·/G/k finite-buffer queue with a stationary ergodic arrival process and delayed customer feedback, where customers after service may repeatedly return to the back of the queue after an independent general feedback delay whose distribution has a continuous density function. We use coupling methods to show that, under some mild conditions, the feedback flow of customers returning to the back of the queue converges to a Poisson process as the feedback delay distribution is scaled up. This allows for easy waiting-time approximations in the setting of Poisson arrivals, and also gives a new coupling proof of a classic highway traffic result of Breiman (1963). We also consider the case of nonindependent feedback delays.