To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper investigates the rate of convergence to the probability distribution of the embedded M/G/1 and GI/M/n queues. We introduce several types of ergodicity including l-ergodicity, geometric ergodicity, uniformly polynomial ergodicity and strong ergodicity. The usual method to prove ergodicity of a Markov chain is to check the existence of a Foster–Lyapunov function or a drift condition, while here we analyse the generating function of the first return probability directly and obtain practical criteria. Moreover, the method can be extended to M/G/1- and GI/M/1-type Markov chains.
We consider an infinite-capacity second-order fluid queue governed by a continuous-time Markov chain and with linear service rate. The variability of the traffic is modeled by a Brownian motion and a local variance function modulated by the Markov chain and proportional to the fluid level in the queue. The behavior of this second-order fluid-flow model is described by a linear stochastic differential equation, satisfied by the transient queue level. We study the transient level's convergence in distribution under weak assumptions and we obtain an expression for the stationary queue level. For the first-order case, we give a simple expression of all its moments as well as of its Laplace transform. For the second-order model we compute its first two moments.
We derive results that show the impact of aggregation in a queueing network. Our model consists of a two-stage queueing system where the first (upstream) queue serves many flows, of which a certain subset arrive at the second (downstream) queue. The downstream queue experiences arbitrary interfering traffic. In this setup, we prove that, as the number of flows being aggregated in the upstream queue increases, the overflow probability of the downstream queue converges uniformly in the buffer level to the overflow probability of a single queueing system obtained by simply removing the upstream queue in the original two-stage queueing system. We also provide the speed of convergence and show that it is at least exponentially fast. We then extend our results to non-i.i.d. traffic arrivals.
We introduce adaptive-simulation schemes for estimating performance measures for stochastic systems based on the method of control variates. We consider several possible methods for adaptively tuning the control-variate estimators, and describe their asymptotic properties. Under certain assumptions, including the existence of a ‘perfect control variate’, all of the estimators considered converge faster than the canonical rate of n−1/2, where n is the simulation run length. Perfect control variates for a variety of stochastic processes can be constructed from ‘approximating martingales’. We prove a central limit theorem for an adaptive estimator that converges at rate A similar estimator converges at rate n−1. An exponential rate of convergence is also possible under suitable conditions.
For a K-stage cyclic queueing network with N customers and general service times, we provide bounds on the nth departure time from each stage. Furthermore, we analyze the asymptotic tail behavior of cycle times and waiting times given that at least one service-time distribution is subexponential.
This paper studies a discrete-time single-server queue with two independent inputs and service interruptions. One of the inputs to the queue is an independent and identically distributed process. The other is a much more general process and it is not required to be Markov nor is it required to be stationary. The service interruption process is also general and it is not required to be Markov or to be stationary. This paper shows that a stochastic decomposition property for the virtual waiting-time process holds in the discrete-time single-server queue with service interruptions. To the best of the author's knowledge, no stochastic decomposition results for virtual waiting-time processes in non-work-conserving queues, such as queues with service interruptions, have been obtained before and only work-conserving queues have been studied in the literature.
In this paper, we consider a model of social learning in a population of myopic, memoryless agents. The agents are placed at integer points on an infinite line. Each time period, they perform experiments with one of two technologies, then each observes the outcomes and technology choices of the two adjacent agents as well as his own outcome. Two learning rules are considered; it is shown that under the first, where an agent changes his technology only if he has had a failure (a bad outcome), the society converges with probability 1 to the better technology. In the other, where agents switch on the basis of the neighbourhood averages, convergence occurs if the better technology is sufficiently better. The results provide a surprisingly optimistic conclusion about the diffusion of the better technology through imitation, even under the assumption of extremely boundedly rational agents.
In this paper, we consider a failure point process related to the Markovian arrival process defined by Neuts. We show that it converges in distribution to a homogeneous Poisson process. This convergence takes place in the context of rare occurrences of failures. We also provide a convergence rate of the convergence in total variation of this point process using an approach developed by Kabanov, Liptser and Shiryaev for the doubly stochastic Poisson process driven by a finite Markov process.
The basic queueing system considered in this paper is the M/G/1 processor-sharing queue with or without impatience and with finite or infinite capacity. Under some mild assumptions, a criterion for the validity of the reduced-service-rate approximation is established when service times are heavy tailed. This result is applied to various models based on M/G/1 processor-sharing queues.
Normed ergodicity is a type of strong ergodicity for which convergence of the nth step transition operator to the stationary operator holds in the operator norm. We derive a new characterization of normed ergodicity and we clarify its relation with exponential ergodicity. The existence of a Lyapunov function together with two conditions on the uniform integrability of the increments of the Markov chain is shown to be a sufficient condition for normed ergodicity. Conversely, the sufficient conditions are also almost necessary.
Service is often provided in contexts where tasks or customers are impatient or perishable in that they have natural lifetimes of availability for useful service. Moreover, these lifetimes are usually unknown to the service provider. The question of how service might best be allocated to the currently waiting tasks or customers in such a context has been neglected and we propose three simple models. For each model, an index heuristic is developed and is assessed numerically. In all cases studied the heuristic comes close to optimality.
We consider the dynamic scheduling of a multiclass queueing system with two servers, one dedicated (server 1) and one flexible (server 2), with no arrivals. Server 1 is dedicated to processing type-1 jobs while server 2 is primarily responsible for processing type-2 jobs but can also aid server 1 with its work. We address when it is optimal for server 2 to aid server 1 with type-1 jobs rather than process type-2 jobs. The objective is to minimize the total holding costs incurred until all jobs in the system are processed and leave the system. We show that the optimal policy can exhibit one of three possible structures: (i) an exhaustive policy for type-2 jobs, (ii) a nonincreasing switching curve in the number of type-1 jobs and (iii) a nondecreasing switching curve in the number of type-1 jobs. We characterize the necessary and sufficient conditions under which each policy will be optimal. We also explore the use of the optimal policy for the problem with no arrivals as a heuristic for the problem with dynamic arrivals.
For the M[X]/G/1 queueing model with a general exhaustive-service vacation policy, it has been proved that the Laplace-Stieltjes transform (LST) of the steady-state distribution function of the waiting time of a customer arriving while the server is active is the product of the corresponding LST in the bulk arrival model with unremovable server and another LST. The expression given for the latter, however, is valid only under the assumption that the number of groups arriving in an inactive phase is independent of the sizes of the groups. We here give an expression which holds in the general case. For the N-policy case, we also give an expression for the LST of the steady-state distribution function of the waiting time of a customer arriving while the server is inactive.
We study estimation of the tail-decay parameter of the marginal distribution corresponding to a discrete-time, real-valued stationary stochastic process. Assuming that the underlying process is short-range dependent, we investigate properties of estimators of the tail-decay parameter which are based on the maximal extreme value of the process observed over a sampled time interval. These estimators only assume that the tail of the marginal distribution is roughly exponential, plus some modest ‘mixing’ conditions. Consistency properties of these estimators are established, as well as minimax convergence rates. We also provide some discussion on estimating the pre-exponent, when a more refined tail asymptotic is assumed. Properties of a certain moving-average variant of the extremal-based estimator are investigated as well. In passing, we also characterize the precise dependence (mixing) assumptions that support almost-sure limit theory for normalized extreme values and related first-passage times in stationary sequences.
In this paper, we study the on-line parameter estimation problem for a partially observable system subject to deterioration and random failure. The state of the system evolves according to a continuous-time homogeneous Markov process with a finite state space. The state of the system is hidden except for the failure state. When the system is operating, only the information obtained by condition monitoring, which is related to the working state of the system, is available. The condition monitoring observations are assumed to be in continuous range, so that no discretization is required. A recursive maximum likelihood (RML) algorithm is proposed for the on-line parameter estimation of the model. The new RML algorithm proposed in the paper is superior to other RML algorithms in the literature in that no projection is needed and no calculation of the gradient on the surface of the constraint manifolds is required. A numerical example is provided to illustrate the algorithm.
An R-out-of-N repairable system, consisting of N independent components, is operating if at least Rcomponents are functioning. The system fails whenever the number of good components decreases from R to R-1. A failed component is sent to a repair facility. After a failed component has been repaired it is as good as new. Formulae for the availability of the system using Markov renewal and semi-regenerative processes are derived. We assume that either the repair times of the components are generally distributed and the components' lifetimes are phase-type distributed or vice versa. Some duality results between the two systems are obtained. Numerical examples are given for several distributions of lifetimes and of repair times.
The notion of minimal repair is generalized to the case when the lifetime distribution function is a continuous or a discrete mixture of distributions (heterogeneous population). The statistical (black box) minimal repair and the minimal repair based on information just before the failure of an object are considered. The corresponding stochastic intensities are defined and analyzed for the point processes generated by both types of minimal repair. Some generalizations are discussed. Several simple examples are considered.
Sapir (1998) calculated the probabilities of the expert rule and of the simple majority rule being optimal under the assumption of exponentially distributed logarithmic expertise levels. Here we find the analogous probabilities for the family of restricted majority rules, including the above two extreme rules as special cases, and the family of balanced expert rules. We compare the two families, the rules within each family, and all rules of the two families with the extreme rules.
We exploit the structural properties of the BMAP/D/k system to carry out its algorithmic analysis. Specifically, we use these properties to develop algorithms for studying the distributions of waiting times in discrete time and the busy period. One of the structural properties used results from considering the system as having customers assigned in a cyclic order—which does not change the waiting-time distribution—and then studying only one arbitrary server. The busy period is defined as the busy period of an arbitrary single server based on this cyclic assignment of customers to servers. Finally, we study the marginal distribution of the joint queue length and phase of customer arrival. The structural property used for studying the queue length is based on the observation of the system every interval that is the length of one customer service time.
We analyse the performance of a material handling system consisting of two carousels and one picker. We derive expressions for the system throughput and picker utilization. We work out the throughput and picker utilization for two different pick-time distributions: deterministic, which might be a reasonable model when a robot is picking, and exponential, which might be a reasonable model when a person is picking.