We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Obtaining good estimates for the distribution function of random variables like (‘perpetuity’) and (‘aggregate claim amount’), where the (Yi), (Zi) are independent i.i.d. sequences and (N(t)) is a general point process, is a key question in insurance mathematics. In this paper, we show how suitably chosen metrics provide a theoretical justification for bootstrap estimation in these cases. In the perpetuity case, we also give a detailed discussion of how the method works in practice.
This paper considers several models for biological processes in which animate individuals live and die as members of groups which can split to form smaller groups. Resulting distributions of individuals over groups are compared and contrasted. In particular, two qualitatively different types of distributions are identified. It is clear that distinguishing between models giving rise to the same distribution types is difficult. Implications for more complex models are discussed and avenues for further research are outlined.
Optimization problems in cancer radiation therapy are considered, with the efficiency functional defined as the difference between expected survival probabilities for normal and neoplastic tissues. Precise upper bounds of the efficiency functional over natural classes of cellular response functions are found. The ‘Lipschitz' upper bound gives rise to a new family of probability metrics. In the framework of the ‘m hit-one target' model of irradiated cell survival the problem of optimal fractionation of the given total dose into n fractions is treated. For m = 1, n arbitrary, and n = 1, 2, m arbitrary, complete solution is obtained. In other cases an approximation procedure is constructed. Stability of extremal values and upper bounds of the efficiency functional with respect to perturbation of radiosensitivity distributions for normal and tumor tissues is demonstrated.
This paper is concerned with the three-parameter generalized gamma distribution (g.g.d.) which is widely employed as a model in life testing. The structural probability distributions of the parameters and a number of structural prediction densities for specific future measurements have been derived based on type-Il progressively censored sample.