To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work, we consider the quasistatic frictionless contact problem between aviscoelastic piezoelectric body and a deformable obstacle. The linear electro-viscoelasticconstitutive law is employed to model the piezoelectric material and the normal compliancecondition is used to model the contact. The variational formulation is derived in a formof a coupled system for the displacement and electric potential fields. An existence anduniqueness result is recalled. Then, a fully discrete scheme is introduced based on thefinite element method to approximate the spatial variable and an Euler scheme to discretizethe time derivatives. Error estimates are derived on the approximative solutions and,as a consequence, the linear convergence of the algorithm is deduced under suitableregularity conditions. Finally, some two-dimensional examples are presented to demonstratethe performance of the algorithm.
In this work we present new numerical methods to simulate the mechanics of head-tape magnetic storage devices. The elastohydrodynamic problem is formulated in terms of a coupled system which is governed by a nonlinear compressible Reynolds equation for the air pressure over the head, and a rod model for the tape displacement. A fixed point algorithm between the solutions of the elastic and hydrodynamic problems is proposed. For the nonlinear Reynolds equation, a characteristics method and a duality algorithm are developed to cope with the convection dominating and nonlinear diffusion features, respectively. Furthermore, in the duality method the convergence and optimal choice of the parameters are analyzed. At each fixed point iteration, in the elastic model a complementarity formulation is required and appropriate numerical techniques are used. For the spatial discretization different finite element spaces are chosen. Finally, numerical test examples illustrate the theoretical results, as well as the good performance in the simulation of real devices.
We consider the system of partial differential equations governingthe one-dimensional flow of two superposed immiscible layers of shallow water. The difficulty in this system comes from the coupling terms involving some derivatives of the unknowns that make the system nonconservative, and eventually nonhyperbolic. Due to these terms, a numerical scheme obtained by performing an arbitrary scheme to each layer, and using time-splitting or other similar techniques leads to instabilities in general. Here we use entropy inequalities in order to control the stability. We introduce a stable well-balanced time-splitting scheme for the two-layer shallow water system that satisfies a fully discrete entropy inequality. In contrast with Roe type solvers, it does not need the computation of eigenvalues, which is not simple for the two-layer shallow water system. The solver has the property to keep the water heights nonnegative, and to be able to treat vanishing values.
The two expressions ‘The cumulative hierarchy’ and ‘The iterative conception of sets’ are usually taken to be synonymous. However, the second is more general than the first, in that there are recursive procedures that generate some ill-founded sets in addition to well-founded sets. The interesting question is whether or not the arguments in favour of the more restrictive version – the cumulative hierarchy – were all along arguments for the more general version.
This paper traces the evolution of thinking on how mathematics relates to the world—from the ancients, through the beginnings of mathematized science in Galileo and Newton, to the rise of pure mathematics in the nineteenth century. The goal is to better understand the role of mathematics in contemporary science.
One interpretation of the conditional If P then Q is as saying that the probability of Q given P is high. This is an interpretation suggested by Adams (1966) and pursued more recently by Edgington (1995). Of course, this probabilistic conditional is nonmonotonic, that is, if the probability of Q given P is high, and R implies P, it need not follow that the probability of Q given R is high. If we were confident of concluding Q from the fact that we knew P, and we have stronger information R, we can no longer be confident of Q. We show nonetheless that usually we would still be justified in concluding Q from R. In other words, probabilistic conditionals are mostly monotonic.
Several philosophers have argued that the logic of set theory should be intuitionistic on the grounds that the open-endedness of the set concept demands the adoption of a nonclassical semantics. This paper examines to what extent adopting such a semantics has revisionary consequences for the logic of our set-theoretic reasoning. It is shown that in the context of the axioms of standard set theory, an intuitionistic semantics sanctions a classical logic. A Kripke semantics in the context of a weaker axiomatization is then considered. It is argued that this semantics vindicates an intuitionistic logic only insofar as certain constraints are put on its interpretation. Wider morals are drawn about the restrictions that this places on the shape of arguments for an intuitionistic revision of the logic of set theory.
We show that the set of ultimately true sentences in Hartry Field's Revenge-immune solution model to the semantic paradoxes is recursively isomorphic to the set of stably true sentences obtained in Hans Herzberger's revision sequence starting from the null hypothesis. We further remark that this shows that a substantial subsystem of second-order number theory is needed to establish the semantic values of sentences in Field's relative consistency proof of his theory over the ground model of the standard natural numbers: -CA0 (second-order number theory with a -comprehension axiom scheme) is insufficient. We briefly consider his claim to have produced a ‘revenge-immune’ solution to the semantic paradoxes by introducing this conditional. We remark that the notion of a ‘determinately true’ operator can be introduced in other settings.
A decision procedure (PrSAT) for classical (Kolmogorov) probability calculus is presented. This decision procedure is based on an existing decision procedure for the theory of real closed fields, which has recently been implemented in Mathematica. A Mathematica implementation of PrSAT is also described, along with several applications to various non-trivial problems in the probability calculus.
In this paper, we present a simple sequent calculus for the modal propositional logic S5. We prove that this sequent calculus is theoremwise equivalent to the Hilbert-style system S5, that it is contraction-free and cut-free, and finally that it is decidable. All results are proved in a purely syntactic way.
It is shown that the standard definitions of truth-functionality, though useful for their purposes, ignore some aspects of the usual informal characterisations of truth-functionality. An alternative definition is given that results in a stronger notion that pays attention to those aspects.
The class of strong random reals can be defined via a natural conception of effective null set. We show that the same class is also characterized by a learning-theoretic criterion of ‘recognizability’.
The paper argues that the view that the particular quantifier is ‘existentially loaded’ is a relatively new one historically and that it has become entrenched in modern philosophical logic for less than happy reasons.
We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order version is known to converge to an entropy solution of the problem. A particular feature of the method is the storage of the multiresolution representation of the solution in a graded tree, whoseleaves are the non-uniform finite volumes on which the numerical divergence is eventually evaluated. Moreover using the L1 contraction of the discrete time evolution operator we derive the optimal choice of the threshold in the adaptive multiresolution method. Numerical examples illustrate thecomputational efficiency together with the convergence properties.
We propose and analyze numerical schemes for viscosity solutions of time-dependent Hamilton-Jacobi equations on the Heisenberg group.The main idea is to construct a grid compatible with the noncommutative group geometry. Under suitable assumptions on the data, the Hamiltonian and the parameters for the discrete first order scheme,we prove that the error between the viscosity solution computed at the grid nodes and the solution of the discrete problem behaves like $\sqrt{h}$ where h is the mesh step. Such an estimate is similar to those available in the Euclidean geometrical setting.The theoretical results are tested numerically on some examples for which semi-analytical formulas for the computation of geodesics are known. Other simulations are presented, for both steady and unsteady problems.
We prove stability and derive error estimates for the recently introduced central discontinuous Galerkin method, in the context of linear hyperbolic equations with possibly discontinuous solutions. A comparison between the centraldiscontinuous Galerkin method and the regular discontinuousGalerkin method in this context is also made.Numerical experiments are provided to validate the quantitativeconclusions from the analysis.
In this paper we construct a model to describe someaspects of the deformation of the central region of the human lung considered as acontinuous elastically deformable medium. To achieve this purpose, we studythe interaction between the pipes composing the tree and the fluid that goes through it. We use a stationary model to determine the deformed radius of each branch. Then, we solve a constrained minimization problem, so as to minimize the viscous (dissipated) energy in the tree. The key feature of our approach is the useof a fixed point theorem in order to find the optimal flow associatedto a deformed tree. We also give some numerical results withinteresting consequences on human lung deformation during expiration, particularlyconcerning the localization of the equal pressure point (EPP).
This article describes the current state of the art of interior-point methods (IPMs) for convex, conic, and general nonlinear optimization. We discuss the theory, outline the algorithms, and comment on the applicability of this class of methods, which have revolutionized the field over the last twenty years.
Homogenization is an important mathematical framework for developing effective models of differential equations with oscillations. We include in the presentation techniques for deriving effective equations, a brief discussion on analysis of related limit processes and numerical methods that are based on homogenization principles. We concentrate on first- and second-order partial differential equations and present results concerning both periodic and random media for linear as well as nonlinear problems. In the numerical sections, we comment on computations of multi-scale problems in general and then focus on projection-based numerical homogenization and the heterogeneous multi-scale method.