To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The logico-algebraic study of Lewis’s hierarchy of variably strict conditional logics has been essentially unexplored, hindering our understanding of their mathematical foundations, and the connections with other logical systems. This work starts filling this gap by providing a logico-algebraic analysis of Lewis’s logics. We begin by introducing novel finite axiomatizations for Lewis’s logics on the syntactic side, distinguishing between global and local consequence relations on Lewisian sphere models on the semantical side, in parallel to the case of modal logic. As first main results, we prove the strong completeness of the calculi with respect to the corresponding semantical consequence on spheres, and a deduction theorem. We then demonstrate that the global calculi are strongly algebraizable in terms of a variety of Boolean algebras with a binary operator representing the counterfactual implication; in contrast, we show that the local ones are generally not algebraizable, although they can be characterized as the degree-preserving logic over the same algebraic models. This yields the strong completeness of all the logics with respect to the algebraic models.
The generic multiverse was introduced in [74] and [81] to explicate the portion of mathematics which is immune to our independence techniques. It consists, roughly speaking, of all universes of sets obtainable from a given universe by forcing extension. Usuba recently showed that the generic multiverse contains a unique definable universe, assuming strong large cardinal hypotheses. On the basis of this theorem, a non-pluralist about set theory could dismiss the generic multiverse as irrelevant to what set theory is really about, namely that unique definable universe. Whatever one’s attitude towards the generic multiverse, we argue that certain impure proofs ensure its ongoing relevance to the foundations of set theory. The proofs use forcing-fragile theories and absoluteness to prove ${\mathrm {ZFC}}$ theorems about simple “concrete” objects.
The distinction between the proofs that only certify the truth of their conclusion and those that also display the reasons why their conclusion holds has a long philosophical history. In the contemporary literature, the grounding relation—an objective, explanatory relation which is tightly connected with the notion of reason—is receiving considerable attention in several fields of philosophy. While much work is being devoted to characterising logical grounding in terms of deduction rules, no in-depth study focusing on the difference between grounding rules and logical rules exists. In this work, we analyse the relation between logical grounding and classical logic by focusing on the technical and conceptual differences that distinguish grounding rules and logical rules. The calculus employed to conduct the analysis provides moreover a strong confirmation of the fact that grounding derivations are logical derivations of a certain kind, without trivialising the distinction between grounding and logical rules, explanatory and non-explanatory parts of a derivation. By a further formal analysis, we negatively answer the question concerning the possible correspondence between grounding rules and intuitionistic logical rules.
The seminal Krajewski–Kotlarski–Lachlan theorem (1981) states that every countable recursively saturated model of $\mathsf {PA}$ (Peano arithmetic) carries a full satisfaction class. This result implies that the compositional theory of truth over $\mathsf {PA}$ commonly known as $\mathsf {CT}^{-}[\mathsf {PA}]$ is conservative over $\mathsf {PA}$. In contrast, Pakhomov and Enayat (2019) showed that the addition of the so-called axiom of disjunctive correctness (that asserts that a finite disjunction is true iff one of its disjuncts is true) to $\mathsf {CT}^{-}[\mathsf {PA}]$ axiomatizes the theory of truth $\mathsf {CT}_{0}[\mathsf {PA}]$ that was shown by Wcisło and Łełyk (2017) to be nonconservative over $\mathsf {PA}$. The main result of this paper (Theorem 3.12) provides a foil to the Pakhomov–Enayat theorem by constructing full satisfaction classes over arbitrary countable recursively saturated models of $\mathsf {PA}$ that satisfy arbitrarily large approximations of disjunctive correctness. This shows that in the Pakhomov–Enayat theorem the assumption of disjunctive correctness cannot be replaced with any of its approximations.
For relevant logics, the admissibility of the rule of proof $\gamma $ has played a significant historical role in the development of relevant logics. For first-order logics, however, there have been only a handful of $\gamma $-admissibility proofs for a select few logics. Here we show that, for each logic L of a wide range of propositional relevant logics for which excluded middle is valid (with fusion and the Ackermann truth constant), the first-order extensions QL and LQ admit $\gamma $. Specifically, these are particular “conventionally normal” extensions of the logic $\mathbf {G}^{g,d}$, which is the least propositional relevant logic (with the usual relational semantics) that admits $\gamma $ by the method of normal models. We also note the circumstances in which our results apply to logics without fusion and the Ackermann truth constant.
In this chapter, we selectively present global methods for efficiently solving FPDEs, employing the basis functions introduced in Chapters 2 and 3. Here, we adopt the term global often in the context of space-time, considering time as another (space-like) spectral direction. We examine a number of typical FPDEs, which we introduced and probabilistically interpreted in Chapter 1, including: the subdiffusion equation, tempered fractional diffusion on the half/whole line, in addition to the generalized and unified (1+d)-dimensional sub-to-superdiffusion FPDE model for d≥1, where a single FPDE form can model a range of physical processes by just varying the corresponding temporal/spatial fractional derivatives in the model, hence, rendering the FPDE elliptic, parabolic, and/or hyperbolic on the (1+d)-dimensional space-time hypercube. In this chapter, we employ one-sided, two-sided, constant/variable-order, and fully distributed order fractional operators, introduced in Chapters 1 and 2.
As highlighted in Chapter 1, anomalous transport phenomena can be observed in a wide variety of complex, multi-scale, and multi-physics systems such as: sub-/super-diffusion in subsurface transport, kinetic plasma turbulence, aging polymers, glassy materials, in addition to amorphous semiconductors, biological cells, heterogeneous tissues, and fractal disordered media. In this chapter, we focus on some selective applications of FPDEs and the methods presented in earlier chapters, reporting the scientific evidence of how and why fractional modeling naturally emerges in each case, along with a review of selected nonlocal mathematical models that have been proposed. The applications of interest are: (i) concentration transport in surface/subsurface dynamics, (ii) complex rheology and material damage, and (iii) fluid turbulence and geostrophic transport.
We initially introduce the standard diffusion model solving the PDF of the Brownian motion/process, satisfying the normal scaling property. This happens through a new definition of the process increments, where they are no longer drawn from a normal distribution, leading to α-stable Lévy flights at the microscopic level and correspondingly an anomalous diffusion model with a fractional Laplacian at the macroscopic scale. Next, we show how the Riemann–Liouville fractional derivatives emerge in another anomalous diffusion model corresponding to the asymmetric α-stable Lévy flights at small scales. Subsequently, we introduce the notion of subdiffusion stochastic processes, in which the Caputo time-fractional derivative appears in the anomalous subdiffusion fractional model. We combine the previous two cases, and construct continuous-time random walks, where a space-time fractional diffusion model will solve the evolution of the probability density function of the stochastic process. Next, we motivate and introduce many other types of fractional derivatives that will code more complexity and variability at micro-to-macroscopic scales, including fractional material derivatives, time-variable diffusivity for the fractional Brownian motion, tempered/variable-order/distributed-order/vector fractional calculus, etc.
This chapter provides a comprehensive presentation of global numerical methods for solving FODEs employing the polynomial and non-polynomial bases, introduced in Chapter 2. The FODEs of interest will be initial-/boundary-value problems, posed using a variety of fractional derivatives (e.g., Caputo, Riemann–Liouville, Riesz, one-sided, two-sided, variable-order, distributed order, etc.), introduced in Chapters 1 and 2. We devote Sections 3.1 and 3.2 to introducing a series of variational and non-variational spectral methods in single domains, where the solution singularities can occur at the initial or boundary points. In a variational formulation of an FODE, one first obtains the weak (variational) form of the given equation, where the highest derivative order is reduced using integration-by-parts, and then solves the variational formulation by constructing the corresponding (finite-dimensional) solution and test subspaces. In non-variational problems, one rather directly solves the strong (original) FODE, hence assuming a higher regularity in the solution. Moreover, we introduce spectral element methods (SEM) for FODEs in multiple domains for the main purpose of capturing possible interior/boundary singularities.
We present the need for new fractional spectral theories, explicitly yielding rather non-polynomial, yet orthogonal, eigensolutions to effectively represent the singularities in solutions to FODEs/FPDEs. To this end, we present the regular/singular theories of fractional Sturm–Liouville eigen-problems. We call the corresponding explicit eigenfunctions of these problems Jacobi poly-fractonomials. We demonstrate their attractive properties including their analytic fractional derivatives/integrals, three-term recursions, special values, function approximability, etc. Subsequently, we introduce the notion of generalized Jacobi poly-fractonomials (GJPFs), expanding the range of admissible parameters also allowing function singularities of negative indices at both ends. Next, we present a rigorous approximation theory for GJPFs with numerical examples. We further generalize our fractional Sturm–Liouville theories to regular/singular tempered fractional Sturm–Liouville eigen-problems, where a new exponentially tempered family of fractional orthogonal basis functions emerges. We finally introduce a variant of orthogonal basis functions suitable for anomalous transport that occurs over significantly longer time-periods.
Fractional diffusion equations are naturally derived on unbounded domains, and their solutions usually decay very slowly at infinity. A usual approach to dealing with unbounded domains is to use a domain truncation with exact or approximate transparent boundary conditions. But since accurate transparent boundary conditions at truncated boundaries are not easily available, we develop in this chapter efficient spectral methods for FPDEs on unbounded domains so as to avoid errors introduced by domain truncation. Formulation of Laplacians in bounded domains will be presented in Chapter 6.