To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper extends the investigations into logical properties of the quantified argument calculus (Quarc) by suggesting a series of proper subsystems which, although retaining the entire vocabulary of Quarc, restrict quantification in such a way as to make the result decidable. The proof of decidability is via a procedure that prunes the infinite branches of a derivation tree in what is a syntactic counterpart of semantic filtration. We demonstrate an application of one of these systems by showing that Aristotle’s assertoric syllogistic is embeddable within, thus also providing another method of showing its decidability.
This paper puts forth a class of algebraic structures, relativized Boolean algebras (RBAs), that provide semantics for propositional logic in which truth/validity is only defined relative to a local domain. In particular, the join of an event and its complement need not be the top element. Nonetheless, behavior is locally governed by the laws of propositional logic. By further endowing these structures with operators—akin to the theory of modal Algebras—RBAs serve as models of modal logics in which truth is relative. In particular, modal RBAs provide semantics for various well-known awareness logics and an alternative view of possibility semantics.
In the early nineteenth century, a series of articles by Laplace and Poisson discussed the importance of ‘directness’ in mathematical methodology. In this thesis, we argue that their conception of a ‘direct’ proof is similar to the more widely contemplated notion of a ‘pure’ proof. More rigorous definitions of mathematical purity were proposed in recent publications by Arana and Detlefsen, as well as by Kahle and Pulcini: we compare Laplace and Poisson’s writings with these modern definitions of purity and show how the modern definitions fail to grasp some more nuanced aspects.
This paper is devoted to the investigation of term-definable connexive implications in substructural logics with exchange and, on the semantical perspective, in sub-varieties of commutative residuated lattices (FL${}_{\scriptsize\mbox{e}}$-algebras). In particular, we inquire into sufficient and necessary conditions under which generalizations of the connexive implication-like operation defined in [6] for Heyting algebras still satisfy connexive theses. It will turn out that, in most cases, connexive principles are equivalent to the equational Glivenko property with respect to Boolean algebras. Furthermore, we provide some philosophical upshots like, e.g., a discussion on the relevance of the above operation in relationship with G. Polya’s logic of plausible inference, and some characterization results on weak and strong connexivity.
Two first-order logic theories are definitionally equivalent if and only if there is a bijection between their model classes that preserves isomorphisms and ultraproducts (Theorem 2). This is a variant of a prior theorem of van Benthem and Pearce. In Example 2, uncountably many pairs of definitionally inequivalent theories are given such that their model categories are concretely isomorphic via bijections that preserve ultraproducts in the model categories up to isomorphism. Based on these results, we settle several conjectures of Barrett, Glymour and Halvorson.
Logical frameworks that are sensitive to features of sentences’ subject-matter—like Berto’s topic-sensitive intentional modals (TSIMs)—demand a maximally faithful model of the topics of sentences. This is an especially difficult task in the case in which topics are assigned to intensional formulae. In two previous papers, a framework was developed whose model of intensional subject-matter could accommodate a wider range of intuitions about particular intensional conditionals. Although resolving a number of counterintuitive features, the work made an implicit assumption that the subject-matter of an intensional conditional is a function of the subject-matters of its subformulae. This assumption—which I will call a principle of topic sufficiency—runs counter to some natural intuitions concerning topic. In this paper, we will investigate topic sufficiency and offer a semantic account that is state-sensitive, providing an implementation through the introduction of topic-sensitive logics related to William Parry’s prototypical $\mathsf {PAI}$.
We formulate Hilbert’s epsilon calculus in the context of expansion proofs. This leads to a simplified proof of the epsilon theorems by disposing of the need for prenexification, Skolemisation, and their respective inverse transformations. We observe that the natural notion of cut in the epsilon calculus is associative.
Orthomodular logic is a weakening of quantum logic in the sense of Birkhoff and von Neumann. Orthomodular logic is shown to be a nonlinear noncommutative logic. Sequents are given a physically motivated semantics that is consistent with exactly one semantics for propositional formulas that use negation, conjunction, and implication. In particular, implication must be interpreted as the Sasaki arrow, which satisfies the deduction theorem in this logic. As an application, this deductive system is extended to two systems of predicate logic: the first is sound for Takeuti’s quantum set theory, and the second is sound for a variant of Weaver’s quantum logic.
We generalize the notion of consequence relation standard in abstract treatments of logic to accommodate intuitions of relevance. The guiding idea follows the use criterion, according to which in order for some premises to have some conclusion(s) as consequence(s), the premises must each be used in some way to obtain the conclusion(s). This relevance intuition turns out to require not just a failure of monotonicity, but also a move to considering consequence relations as obtaining between multisets. We motivate and state basic definitions of relevant consequence relations, both in single conclusion (asymmetric) and multiple conclusion (symmetric) settings, as well as derivations and theories, guided by the use intuitions, and prove a number of results indicating that the definitions capture the desired results (at least in many cases).
The present note was prompted by Weber’s approach to proving Cantor’s theorem, i.e., the claim that the cardinality of the power set of a set is always greater than that of the set itself. While I do not contest that his proof succeeds, my point is that he neglects the possibility that by similar methods it can be shown also that no non-empty set satisfies Cantor’s theorem. In this paper unrestricted abstraction based on a cut free Gentzen type sequential calculus will be employed to prove both results. In view of the connection between Priest’s three-valued logic of paradox and cut free Gentzen calculi this, a fortiori, has an impact on any paraconsistent set theory built on Priest’s logic of paradox.
I discuss problems with Martin-Löf’s distinction between analytic and synthetic judgments in constructive type theory and propose a revision of his views. I maintain that a judgment is analytic when its correctness follows exclusively from the evaluation of the expressions occurring in it. I argue that Martin-Löf’s claim that all judgments of the forms $a : A$ and $a = b : A$ are analytic is unfounded. As I shall show, when A evaluates to a dependent function type $(x : B) \to C$, all judgments of these forms fail to be analytic and therefore end up as synthetic. Going beyond the scope of Martin-Löf’s original distinction, I also argue that all hypothetical judgments are synthetic and show how the analytic–synthetic distinction reworked here is capable of accommodating judgments of the forms $A \> \mathsf {type}$ and $A = B \> \mathsf {type}$ as well. Finally, I consider and reject an alternative account of analyticity as decidability and assess Martin-Löf’s position on the analytic grounding of synthetic judgments.
This paper proves the finite axiomatizability of transitive modal logics of finite depth and finite width w.r.t. proper-successor-equivalence. The frame condition of the latter requires, in a rooted transitive frame, a finite upper bound of cardinality for antichains of points with different sets of proper successors. The result generalizes Rybakov’s result of the finite axiomatizability of extensions of $\mathbf {S4}$ of finite depth and finite width.
It is widely thought that chance should be understood in reductionist terms: claims about chance should be understood as claims that certain patterns of events are instantiated. There are many possible reductionist theories of chance, differing as to which possible pattern of events they take to be chance-making. It is also widely taken to be a norm of rationality that credence should defer to chance: special cases aside, rationality requires that one’s credence function, when conditionalized on the chance-making facts, should coincide with the objective chance function. It is a shortcoming of a theory of chance if it implies that this norm of rationality is unsatisfiable. The primary goal of this paper is to show, on the basis of considerations concerning computability and inductive learning, that this shortcoming is more common than one would have hoped.
In this note we study a counterpart in predicate logic of the notion of logical friendliness, introduced into propositional logic in [15]. The result is a new consequence relation for predicate languages with equality using first-order models. While compactness, interpolation and axiomatizability fail dramatically, several other properties are preserved from the propositional case. Divergence is diminished when the language does not contain equality with its standard interpretation.
The paper investigates from a proof-theoretic perspective various non-contractive logical systems, which circumvent logical and semantic paradoxes. Until recently, such systems only displayed additive quantifiers (Grišin and Cantini). Systems with multiplicative quantifiers were proposed in the 2010s (Zardini), but they turned out to be inconsistent with the naive rules for truth or comprehension. We start by presenting a first-order system for disquotational truth with additive quantifiers and compare it with Grišin set theory. We then analyze the reasons behind the inconsistency phenomenon affecting multiplicative quantifiers. After interpreting the exponentials in affine logic as vacuous quantifiers, we show how such a logic can be simulated within a truth-free fragment of a system with multiplicative quantifiers. Finally, we establish that the logic for these multiplicative quantifiers (but without disquotational truth) is consistent, by proving that an infinitary version of the cut rule can be eliminated. This paves the way to a syntactic approach to the proof theory of infinitary logic with infinite sequents.
We explain and explore class-theoretic potentialism—the view that one can always individuate more classes over a set-theoretic universe. We examine some motivations for class-theoretic potentialism, before proving some results concerning the relevant potentialist systems (in particular exhibiting failures of the $\mathsf {.2}$ and $\mathsf {.3}$ axioms). We then discuss the significance of these results for the different kinds of class-theoretic potentialists.