To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Droplet coalescence is an essential multiphase flow process in nature and industry. For the inviscid coalescence of two spherical droplets, our experiment shows that the classical 1/2 power-law scaling for equal-size droplets still holds for the unequal-size situation of small size ratios, but it diverges as the size ratio increases. Employing an energy balance analysis, we develop the first theory for asymmetric droplet coalescence, yielding a solution that collapses all experimental data of different size ratios. This confirms the physical relevance of the new set of length and time scales given by the theory. The functionality of the solution reveals an exponential dependence of the bridge’s radial growth on time, implying a scaling-free nature. Nevertheless, the small-time asymptote of the model is able to recover the classical power-law scaling, so that the actual bridge evolution still follows the scaling law asymptotically in a wide parameter space. Further analysis suggests that the scaling-free evolution behaviour emerges only at late coalescence time and large size ratios.
An experimental study is conducted to compare droplet generation in a deep-water plunging breaker in filtered tap water and in the presence of low and high bulk concentrations of the soluble surfactant Triton X-100. The breakers are generated by a programmable wave maker that is set with a single motion profile that produces a highly repeatable dispersively focused two-dimensional (2-D) wave packet with a central wavelength of $\lambda _0=1.18\,\rm m$. The droplets are measured with an in-line cinematic holographic system. It is found that the presence of surfactants significantly modifies the overall droplet number and the distributions of droplet diameter and velocity components produced by the four main droplet producing mechanisms of the breaker as identified by Erinin et al. ( J. Fluid Mech., vol. 967, 2023, p. A36). These modifications are due to both surfactant-induced changes in the flow structures that generate droplets and changes in the details of droplet production mechanisms in each flow structure.
Thermo-responsive hydrogels are smart materials that rapidly switch between hydrophilic (swollen) and hydrophobic (shrunken) states when heated past a threshold temperature, resulting in order-of-magnitude changes in gel volume. Modelling the dynamics of this switch is notoriously difficult and typically involves fitting a large number of microscopic material parameters to experimental data. In this paper, we present and validate an intuitive, macroscopic description of responsive gel dynamics and use it to explore the shrinking, swelling and pumping of responsive hydrogel displacement pumps for microfluidic devices. We finish with a discussion on how such tubular structures may be used to speed up the response times of larger hydrogel smart actuators and unlock new possibilities for dynamic shape change.
Bubble bursting and subsequent collapse of the open cavity at free surfaces of contaminated liquids can generate aerosol droplets, facilitating pathogen transport. After film rupture, capillary waves focus at the cavity base, potentially generating fast Worthington jets that are responsible for ejecting the droplets away from the source. While extensively studied for Newtonian fluids, the influence of non-Newtonian rheology on this process remains poorly understood. Here, we employ direct numerical simulations to investigate the bubble cavity collapse in viscoelastic media, such as polymeric liquids. We find that the jet and drop formations are dictated by two dimensionless parameters: the elastocapillary number $Ec$ (the ratio of the elastic modulus and the Laplace pressure) and the Deborah number $De$ (the ratio of the relaxation time and the inertio-capillary time scale). We show that, for low values of $Ec$ and $De$, the viscoelastic liquid adopts a Newtonian-like behaviour, where the dynamics is governed by the solvent Ohnesorge number $Oh_s$ (the ratio of visco-capillary and inertio-capillary time scales). In contrast, for large values $Ec$ and $De$, the enhanced elastic stresses completely suppress the formation of the jet. For some cases with intermediate values of $Ec$ and $De$, smaller droplets are produced compared with Newtonian fluids, potentially enhancing aerosol dispersal. By mapping the phase space spanned by $Ec$, $De$ and $Oh_s$, we reveal three distinct flow regimes: (i) jets forming droplets, (ii) jets without droplet formation and (iii) absence of jet formation. Our results elucidate the mechanisms underlying aerosol suppression versus fine spray formation in polymeric liquids, with implications for pathogen transmission and industrial processes involving viscoelastic fluids.
The Cahn–Hilliard–Navier–Stokes (CHNS) partial differential equations (PDEs) provide a powerful framework for the study of the statistical mechanics and fluid dynamics of multiphase fluids. We provide an introduction to the equilibrium and non-equilibrium statistical mechanics of systems in which coexisting phases, distinguished from each other by scalar order parameters, are separated by an interface. We then introduce the coupled CHNS PDEs for two immiscible fluids and generalisations for (i) coexisting phases with different viscosities, (ii) CHNS with gravity, (iii) three-component fluids and (iv) the CHNS for active fluids. We discuss mathematical issues of the regularity of solutions of the CHNS PDEs. Finally we provide a survey of the rich variety of results that have been obtained by numerical studies of CHNS-type PDEs for diverse systems, including bubbles in turbulent flows, antibubbles, droplet and liquid-lens mergers, turbulence in the active-CHNS model and its generalisation that can lead to a self-propelled droplet.
This investigation examines the dynamic response of an accelerating turbulent pipe flow using direct numerical simulation data sets. A low/high-pass Fourier filter is used to investigate the contribution and time dependence of the large-scale motions (LSM) and the small-scale motions (SSM) into the transient Reynolds shear stress. Additionally, it analyses how the LSM and SSM influence the mean wall shear stress using the Fukagata–Iwamoto–Kasagi identity. The results reveal that turbulence is frozen during the early flow excursion. During the pretransition stage, energy growth of the LSM and a subtle decay in the SSM is observed, suggesting a laminarescent trend of SSM. The transition period exhibits rapid energy growth in the SSM energy spectrum at the near-wall region, implying a shift in the dominant contribution from LSM to SSM to the frictional drag. The core-relaxation stage shows a quasisteady behaviour in large- and small-scale turbulence at the near-wall region and progressive growth of small- and large-scale turbulence within the wake region. The wall-normal gradient of the Reynolds shear stress premultiplied energy cospectra was analysed to understand how LSM and SSM influence the mean momentum balance across the different transient stages. A relevant observation is the creation of a momentum sink produced at the buffer region in large- and very large-scale (VLSM) wavelengths during the pretransition. This sink region annihilates a momentum source located in the VLSM spectrum and at the onset of the logarithmic region of the net-force spectra. This region is a source term in steady wall-bounded turbulence.
James Clerk Maxwell is one of the giants of scientific thought, and whilst his groundbreaking contributions to electromagnetism and statistical physics are well known, his profound insights into the theory of structures are appreciated less widely. Maxwell's approach was deeply geometrical, and this richly illustrated book reveals his astute perception of the remarkable dualities that exist between the form of a structure and the forces it can carry, with understandings that will surprise contemporary readers. Early chapters introduce the background in which Maxwell was working, followed by contributions by leading researchers describing the latest applications of these ideas. Subsequent chapters introduce the many subtopics that this work embraces. The book ends with Maxwell's original papers on structural mechanics, each annotated to highlight and explain the ideas therein. This is a wonderful resource for mathematicians, scientists, engineers, and designers to enter this rich and underexplored aspect of the genius of Maxwell.
The 1994 discovery of Shor's quantum algorithm for integer factorization—an important practical problem in the area of cryptography—demonstrated quantum computing's potential for real-world impact. Since then, researchers have worked intensively to expand the list of practical problems that quantum algorithms can solve effectively. This book surveys the fruits of this effort, covering proposed quantum algorithms for concrete problems in many application areas, including quantum chemistry, optimization, finance, and machine learning. For each quantum algorithm considered, the book clearly states the problem being solved and the full computational complexity of the procedure, making sure to account for the contribution from all the underlying primitive ingredients. Separately, the book provides a detailed, independent summary of the most common algorithmic primitives. It has a modular, encyclopedic format to facilitate navigation of the material and to provide a quick reference for designers of quantum algorithms and quantum computing researchers.
In this original and modern book, the complexities of quantum phenomena and quantum resource theories are meticulously unravelled, from foundational entanglement and thermodynamics to the nuanced realms of asymmetry and beyond. Ideal for those aspiring to grasp the full scope of quantum resources, the text integrates advanced mathematical methods and physical principles within a comprehensive, accessible framework. Including over 760 exercises throughout, to develop and expand key concepts, readers will gain an unrivalled understanding of the topic. With its unique blend of pedagogical depth and cutting-edge research, it not only paves the way for a deep understanding of quantum resource theories but also illuminates the path toward innovative research directions. Providing the latest developments in the field as well as established knowledge within a unified framework, this book will be indispensable to students, educators, and researchers interested in quantum science's profound mysteries and applications.
This paper discusses the propagation of coastal currents generated by a river outflow using a 1 ${1}/{2}$-layer, quasigeostrophic model, following Johnson et al. (2017) (JSM17). The model incorporates two key physical processes: Kelvin-wave-generated flow and vortical advection along the coast. We extend JSM17 by deriving a fully nonlinear, long-wave, dispersive equation governing the evolution of the coastal current width. Numerical solutions show that, at large times, the flow behaviour divides naturally into three regimes: a steady outflow region, intermediate regions consisting of constant-width steady currents and unsteady propagating fronts leading the current. The widths of the steady currents depend strongly on dispersion when the constant outflow potential-vorticity anomaly is negative. Simulations using contour dynamics show that the dispersive equation captures the full quasigeostrophic behaviour more closely than JSM17 and give accurate bounds on the widths of the steady currents.
We study the evaporation dynamics of non-thin non-spherical-cap (i.e. wavy) droplets. These droplets exhibit surface curvature that varies periodically with the polar angle, which profoundly influences their evaporation flux, internal flow dynamics, and the resultant deposition patterns upon complete evaporation. The droplet is considered quasi-static throughout its entire lifetime. The asymptotic expansions of the evaporation flux in the diffusion-limited model, and the induced internal inviscid flow of the droplets, are derived through asymptotic analysis. Under the assumption of small deformation amplitudes, the accuracies of these two expansions are validated numerically. Expanding upon these asymptotic results, we also investigate the surface density profile of the droplet deposition after it dries up. The results indicate that the freely moving contact line of the droplet leads to the deposited stain exhibiting a mountain-like morphology. The internal inviscid flow along with the non-spherical-cap shape eliminates the divergence of the deposited surface density profile at droplet’s centre. This work provides a theoretical basis for geometrically controlled sessile droplet evaporation, which may have practical applications in industry.
This accessible text is an introduction to the theory of phase transitions and its application to real materials. Assuming some familiarity with thermodynamics and statistical mechanics, the book begins with a primer on the thermodynamics of equilibrium phase transitions, including the mean-field and Ginzburg-Landau approaches. The general kinetic features and dynamics of phase transitions are explained, ensuring that readers are familiar with the key physical concepts. With the foundations established, the general theory is applied to the study of phase transitions in a wide range of materials including ferroic materials, caloric materials, liquid crystals and glasses. Non-equilibrium phase transitions, superconductors and quantum phase transitions are also covered. Including exercises throughout and solutions available online, this text is suitable for graduate courses as well as researchers in physics and materials science seeking a primer on popular and emerging research topics.
This research investigated the potential improvement of IVR on procedural practical knowledge in maritime safety education in a lifeboat case study. Participants were divided into three groups: a VR, control and VR+ group. A practical test exam with a real lifeboat was conducted to evaluate the differences in number of students passed/failed and overall performances in the execution of lifeboat launching procedures between groups. There was no evidence that the VR students had a higher success rate than students in the control group in correctly and safely performing a lifeboat drill. However, VR students’ overall performances on procedural correctness were significantly better than those of the control group, despite that the VR students never practiced with a physical lifeboat. Given the importance of safety in the maritime industry, it is worthwhile to further investigate to what extent IVR can provide a solution to the current limitations in maritime safety education.
The unmanned surface vehicle (USV) is deemed with significant potential to deal with the maritime search and rescue (SAR) missions. This paper investigates the path planning of the USV with SAR tasks, and proposes a novel algorithm based on combined convolutional neural network rapid-exploration random tree and improved artificial potential field (CRRT-IAPF). The proposed scheme can be divided into the global and the local path plannings. The rapid-exploration random tree (RRT) method is employed to generate the global path in the sea chart, which is further discriminated to be optimal or non-optimal through a well-trained convolutional neural network (CNN). The artificial potential field (APF) method is adopted to plan the local path in the environment with small obstacles and SAR task points. To facilitate the path convergence and avoid the oscillation, the potential field function is improved in a more efficient way. In addition, the evaluation functions of search success rate and rescue success rate are established to evaluate the completeness of SAR tasks. Through the simulation, it is verified that the proposed CRRT-IAPF scheme has the superiority over the others.
The article is devoted to the mathematical theories and algorithms necessary for the implementation of a software package that fully automates the calculations necessary in Nautical Astronomy. The article describes a method for calculating the equatorial and horizontal coordinates of the celestial bodies at any moment of time. The authors describe the calculation of the time of the apparent rising (setting) of the Sun, solar illumination and events of other celestial bodies. A formula for calculating astronomical refraction is proposed. A matrix method for implementing the method of least squares for determining the coordinates of a place along the lines of position is described. An algorithm for identifying navigational planets is also described and a method for estimating the error for it is proposed. Based on this, the results of the development of the software package ‘Astronomy Package’ for Nautical Astronomy are presented.
The need for Global Navigation Satellite System (GNSS) receiver testing increases with the advent of widespread Internet of Things (IoT) technologies and other electronic devices dependent on position determination. In this paper, a low-cost GNSS multiband L1+L5 signal recorder and replayer for equipment testing purposes is proposed. It is implemented using Software-Defined Radio (SDR) modules HackRF One with proper time and phase synchronisation. The recorder–replayer has been tested with GPS, GALILEO, BEIDOU and GLONASS satellites and several commercial GNSS receivers. Reduced GNSS signal bandwidth of approximately 10 MHz is sufficient for efficient reception of recorded signals. Performed tests with a driving car show applicability of this GNSS recorder–replayer in dynamic settings.
The first globalisation of the world occurred under the motivation of the Avis dynasty of Portugal, aimed at discovering new lands and wealth, exploring ocean routes, especially with the successful epic journey to India. The political decisions of the Avis dynasty kings, along with Christianity’s interest in expanding into Africa and Asia, were key factors in the success of these maritime explorations. However, the Coriolis force was a significant force of nature for the outcome of this journey. Here we investigate Caminha’s letter, the scribe of Pedro Álvares Cabral’s fleet when he found the lands of Brazil. This letter contains detailed scientific data, distances travelled, dates, geographical features, fauna and flora, initial anthropological information on indigenous peoples, and records of coastal depths. Analysis of these elements and facts lead to a new proposal for the location of Mount Pascoal and the so-called safe harbour, where Cabral’s fleet landed.
Terrain-aided navigation with a three-dimensional (3D) map has both high accuracy and high reliability, which is crucial for applications in the global navigation satellite system (GNSS)-denied scenarios. In this paper, a new terrain matching algorithm with 3D Zernike moments (3D ZMs) is proposed. The redundant items in the even-order 3D ZMs are analysed in theory. The 3D ZMs are also correlated with the standard deviations of terrain further to identify the redundant items. The new 3D ZM descriptors are proposed for the feature vector of the matching algorithm by excluding the redundant items from the descriptors. The simulation results demonstrate that the algorithm with the revised descriptors achieves a higher matching success rate than both that with the existing descriptors and that with the odd-order descriptors under the same conditions.
Maritime piracy represents a significant international challenge, impacting both economic stability and political dynamics. Researchers from diverse disciplines have been drawn to this multifaceted issue, each aiming to understand and address different aspects of piracy’s impact and implications. This study offers a comprehensive overview of maritime piracy research based on bibliographic analysis. Its objective is threefold. First, to delineate the key domains of inquiry within maritime piracy research. These domains encompass a wide range of topics, including the socio-economic drivers of piracy, the legal frameworks governing maritime security, and computer science to analyse piracy acts. Second, to identify major contributions in the field, recognising seminal works, influential authors and significant findings related to maritime piracy. Lastly, to discern emerging research trends within maritime piracy, and to identify novel areas of inquiry, innovative methodologies and promising avenues for future exploration. Furthermore, the most popular datasets from these studies that include relevant information are presented in this work.