We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we investigate the number of customers that overlap or coincide with a virtual customer in an Erlang-A queue. Our analysis starts with the fluid and diffusion limit differential equations to obtain the mean and variance of the queue length. We then develop precise approximations for waiting times using fluid limits and the polygamma function. Building on this, we introduce a novel approximation scheme to calculate the mean and variance of the number of overlapping customers. This method facilitates the assessment of transient overlap risks in complex service systems, offering a useful tool for service providers to mitigate significant overlaps during pandemic seasons.
In this note, we formulate a ‘one-sided’ version of Wormald’s differential equation method. In the standard ‘two-sided’ method, one is given a family of random variables that evolve over time and which satisfy some conditions, including a tight estimate of the expected change in each variable over one-time step. These estimates for the expected one-step changes suggest that the variables ought to be close to the solution of a certain system of differential equations, and the standard method concludes that this is indeed the case. We give a result for the case where instead of a tight estimate for each variable’s expected one-step change, we have only an upper bound. Our proof is very simple and is flexible enough that if we instead assume tight estimates on the variables, then we recover the conclusion of the standard differential equation method.