We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
X-ray diffraction patterns obtained from montmorillonite-dextran complexes prepared with either B-512F or Polytran dextran showed maximum oven-dry crystal expansions of about 5·3 Å. X-ray diffraction patterns of individual complex preparations containing < 20 per cent dextran showed evidence of both expanded and collapsed crystals. The observation of expanded and collapsed crystals in individual preparations has not been previously reported and was apparently related to clay preparation. An estimate of the quantity of dextran which could be interacting with the silicate surface was obtained using polymer adsorption weights and volumes. At maximum adsorption almost all adsorbed B-512F could be in contact with the mineral surface, but only two thirds of the adsorbed Polytran could be in contact with the mineral surface.
The combined use of electron microscopy and of selected area diffraction (SAD) has been applied to the study of montmorillonites from Wyoming and from Camp-Berteaux, of nontronite, and of hectorite. The study shows that only the elementary layers of the Wyoming montmorillonite and of the nontronite are single two-dimensional crystals. The elementary layers of the montmorillonite from Camp-Berteaux are formed by edge-to-edge associations of very small elements with mutual orientations of about 60° or multiples of 60°. The layers of hectorite are formed by edge-to-edge association of laths with fluctuations of orientation of the order of 10° rotation around adjoining edges. The SAD patterns of Wyoming montmorillonite show that the single layer plane symmetry group of this mineral is c1m1; nontronite layers belong to the symmetry group c2mm. The study of thick particles shows that in turbostratic smectites the layers are stacked with mutual rotations around the perpendicular to their plane. This mode of stacking explains the absence of hkl reflections. High resolution diffraction (HRD) patterns obtained with sample inclined to the electron beam show that only the structure of hectorite approaches the ideal model; nontronite and montmorillonite exhibit appreciable distortions with respect to the ideal model. HRD diagrams provide precise information for the refinement of the crystal structures of smectites
In the special theory of relativity, there is an unusual formula for addition of velocities. We will use this formula to generate Pythagorean triples. We define a Pythagorean triple in the usual manner as a triple of positive integers (a, b, c) such that a2 + b2 = c2. The numbers a and b are called legs, and c is called the hypotenuse. Later, we will allow b to take on the value of any integer. A primitive Pythagorean triple is a Pythagorean triple for which a, b and c are relatively prime.
The selectivity of K over Ca of Amelia biotite increased sharply upon oxidation by H2O2 at pH 6·0. This increase in K selectivity was only partially reversible upon reduction by Na2S2O4. Oxidation by H2O2 of the Ca-form of this biotite resulted in a loss of no more than 2·8 and 0·4 per cent of the total Fe and Al, respectively, and caused a small and perhaps insignificant decrease in layer charge. Although 95 per cent of the structural Fe2+ of the Ca-form of this biotite was ozidized by H2O2, only 17 per cent was reduced again by four treatments with Na2S2O4.
The evidence indicates that under the conditions of this experiment the loss of protons from structural hydroxyls was the dominant mechanism by which electroneutrality in the biotite was maintained during oxidation of structural Fe2+. Because this mechanism increases the bond strength of interlayer K, it explains the increased K selectivity of biotite upon H2O2 oxidation. The relatively small reduction by Na2S2O4 of structural Fe3+ to Fe2+, which implies an equally small reprotonation of structural hydroxyls, explains the incomplete reversibility of K selectivity by Na2S2O4 treatment.
Ion-exchange experiments in expanding clay minerals conducted over a wide range of surface ionic compositions and ionic strength produce variable mass-action selectivity coefficients. When the exchanging ions are of unequal charge, tactoid structure appears to influence selectivity, although configurational entropy of adsorbed ions may also generate variable selectivity. The degree of deviation from ideal mass-action exchange is related to the dissimilarity of the ions undergoing exchange. Data involving trivalent ion adsorption on smectites suggest that mass-action is a poor approximation when the adsorbing and desorbing ions have different hydration energies and charge. No form of exchange equation is successful in describing ion exchange for a wide range of experimental conditions, although the fluctuation of the selectivity coefficient follows consistent trends with changing experimental conditions. The strong adsorption of high-charge ions on clays is not exothermic, but must be driven by the increasing disorder of ions and/or water.
Analysis of Mossbauer effect in layer silicates provides a spectroscopic method for determining valences and coordination of iron. In this study Mossbauer spectra were obtained for amesite, cronstedtite, nontronite, two glauconites, biotite, lepidomelane, chlorite, minnesotaite, vermiculite. stilpnomelane, and chloritoid.
Trivalent iron was detected in tetrahedral coordination. Abundant trivalent iron in octahedral coordination apparently causes quadrupole splitting values of divalent iron in the same mineral to decrease. This phenomenon was noted in cronstedtite and glauconite. In cases where divalent iron predominates in the mineral, the quadrupole splitting is larger. It is generally accepted that ferrous iron is largely in octahedral coordination. This suggests that the octahedral sites may be more distorted when ferric iron is present in the octahedral sheet. In biotite, quadrupole splitting of divalent iron is decreased when trivalent iron is present in tetrahedral sheets. This suggests that there is also more distortion in the octahedral sheet because of iron in tetrahedral positions.
The tris(ethylenediamine) complex cations of chromium(III), cobalt(III), and copper(II) were exchanged onto sodium montmorillonite. The resulting cation exchanged clays were dried, ground, sieved and the 50/80 mesh size was retained for use as column packing material to be used in gas chromatographic analysis of light hydrocarbons and oxides of nitrogen. Studies indicated that the hydrocarbons were following a sieving action whereas the nitrogen oxides were involved in a surface adsorption process.
The changes in d001-spacing and surface area of tris(ethylenediamine)Cr(III)-montmorillonite were correlated with the changes in gas chromatographic retention time for the light hydrocarbons and the oxides of nitrogen.
Retention time was obtained for the 100 per cent exchanged montmorillonites containing cations of tris(ethylenediamine)Cr(III), tris(ethylenediamine)Co(III), and tris(ethylenediamine)Cu(II). A comparative study of the d001-spacing and surface area of the three clays is shown to be directly related to the retention time.
Heating effects were studied to determine thermal stability. Changes in retention times were compared with various structural changes. DTA and heating-oscillating X-ray powder diffraction analysis were used to help explain the relationship between retention time and structural change.
Silica has been intercalated in swelling clays by hydrolysis and/or oxidation of tris(acetylacetonato)siIicon(IV) cations, Si(acac)3+, and polychlorosiloxanes, (-SiOCl2-)n, in the interla-mellar regions of the minerals. The Si(acac)3+ ions have been placed on the interlamellar surfaces by ion exchange and by in situ reaction of the acetylacetone-solvated clays with SiCl4. The (-SiOCl2-)n polymers were formed in the interlayers by reaction of adsorbed benzaldehyde with SiCl4. The optimum (001) spacing observed after firing the clays in air at 500°C (12.6 Å) corresponds to the presence of a monolayer of siloxane chains. Nitrogen BET surface areas range from 40 to 240 m2/g, depending on the amount of internal surface covered by the intercalated silica. In some cases, highly ordered products were formed which exhibit four orders of (00ℓ) reflection. Interstratified products with d(001) values between 9.6 and 12.6 Å exhibit surface areas consistent with the presence of a random mixture of totally collapsed interlayers and interlayers containing siloxane monolayers. Attempts to achieve silica intercalation by hydrolysis of SiCl4 in the clay interlayers were not productive.
The effects of NaOAc removal of carbonates, H2O2 removal of organic materials, and sodium citrate-bicarbonate-dithionite (SCBD) removal of iron oxides upon the X-ray powder diffraction (XRD) characteristics of clay minerals present within weathered volcanic ash deposits were examined. All pretreatments of samples derived from the Ae and Bhf horizons containing volcanic ash resulted in dramatic increases in XRD peak intensities, while the treatment of IIC-horizon samples resulted in subdued XRD peak intensities. Also, the chemical treatments produced an apparent increase in the amount of expandable clay minerals within the Ae horizon, due probably to the hydrolysis and removal of interlayer Al3+ when H2O2 and SCBD were used. Hence, poorly ordered and pedogenically modified vermiculite or vermiculite/montmorillonite interstratifications became “weathered” by H+ attack and Al3+ removal in a manner similar to the natural processes which take place in the acid and eluvial A horizon. In addition, possible XRD peak modification due to the dilution of crystalline clay concentrations by amorphous clay-size material appeared to be subordinate to the laboratory-induced chemical alteration of the weathered clay minerals.