To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Aortopathy in Turner syndrome is associated with aortic dilation, and the risk of dissection is increased when the aortic size index is ≥ 2–2.5 cm/m2. We evaluated the aortic biophysical properties in paediatric Turner syndrome using cardiac MRI to determine their relationship to aortic size index.
Methods:
Turner syndrome patients underwent cardiac MRI to evaluate ventricular function, aortic dimensions, and biophysical properties (aortic stiffness index, compliance, distensibility, pulse wave velocity, and aortic and left ventricular elastance). Spearman correlation examined correlations between these properties and aortic size index. Data was compared to 10 controls.
Results:
Of 25 Turner syndrome patients, median age 14.7 years (interquartile range: 11.0–16.8), height z score −2.7 (interquartile range: −2.92 – −1.54), 24% had a bicuspid aortic valve. Turner syndrome had increased diastolic blood pressure (p < 0.001) and decreased left ventricular end-diastolic (p < 0.001) and end-systolic (p = 0.002) volumes compared to controls. Median aortic size index was 1.81 cm/m2 (interquartile range: 1.45–2.1) and 7 had an aortic size index > 2 cm/m2. Aortic and left ventricular elastance were greater in Turner syndrome compared to controls (both p < 0.001). Increased aortic size index correlated with increased aortic elastance (r = 0.5, p = 0.01) and left ventricular elastance (r = 0.59, p = 0.002) but not aortic compliance. Higher ascending aortic areas were associated with increased aortic compliance (r = 0.44, p = 0.03) and left ventricular elastance (r = 0.49, p = 0.01).
Conclusion:
Paediatric Turner syndrome with similar aortic size index to controls showed MRI evidence of abnormal aortic biophysical properties. These findings point to an underlying aortopathy and provide additional parameters that may aid in determining risk factors for aortic dissection.
The nurse cell in the cyst of Trichinella spiralis comprises at least two kinds of cytoplasm, derived from muscle or satellite cells, as indicated by the pattern of staining using regular dye (haematoxylin and eosin, or toluidine blue), alkaline phosphatase (ALP) expression, acid phosphatase (ACP) expression and immunostaining with an anti-intermediate filament protein (desmin or keratin). Muscle cells undergo basophilic changes following a T. spiralis infection and transform to the nurse cells, accompanied by an increase in ACP activity and the disappearance of desmin. Satellite cells are activated, transformed and joined to the nurse cells but remain eosinophilic. The eosinophilic cytoplasm is accompanied by an increase in desmin and ALP expression but not an increase in ACP activity. Differences in the staining results for ALP or ACP suggest that the two kinds of cytoplasm have different functions. Trichinella pseudospiralis infection results in an increase of ACP activity at a later stage than T. spiralis. There is also a difference in the location pattern of ACP in the cyst of T. spiralis compared with T. pseudospiralis. In T. spiralis, ACP is diffused within the cell, but in T. pseudospiralis, ACP distribution is spotty corresponding to the location of the nucleus. Trichinella pseudospiralis infection is accompanied by a slight increase in ALP activity. Activated satellite cells following a T. pseudospiralis infection exhibit an increase in desmin expression. The present study therefore reveals that nurse cell cytoplasm differs between the two Trichinella species and between the two origins of cytoplasm in the cyst of T. spiralis.
Four parameters of the intestinal inflammatory response (numbers of mucosal mast cells (MMC) and Paneth cells, villus:crypt ratios and mitotic figures) were measured in mice exposed to varying doses of infective larvae of Trichinella spiralis.The aim of the experiments was to determine whether generation of these components of inflammation required a threshold level of infection and whether, once triggered, inflammation became pan-mucosal. Near maximal MMC and Paneth cell responses were elicited even with infections as low as 35 larvae; changes in villus:crypt ratios and in mitotic indices also occurred at this level of infection, but were progressively greater with increasing levels of infection. In all infected mice, including those infected with 35 larvae, MMC and Paneth cell responses extended over most of the small intestine. These data are interpreted as showing: (i) that the intestinal mucosa is highly responsive to T. spiralis infection; (ii) that once triggered, components of the inflammatory response are amplified by T cell-dependent mechanisms, becoming pan-mucosal; and (iii) that MMC and Paneth cell responses, which require cell division and differentiation, become maximal at a lower infection threshold than changes in the villus:crypt ratio or in mitotic indices, which directly reflect increased rates of division in crypt cells.
Advances in brain–brain interface technologies raise the possibility that two or more individuals could directly link their minds, sharing thoughts, emotions, and sensory experiences. This paper explores conceptual and ethical issues posed by such mind-merging technologies in the context of clinical neuroethics. Using hypothetical examples along a spectrum from loosely connected pairs to fully merged minds, the authors sketch out a range of factors relevant to identifying the degree of a merger. They then consider potential new harms like loss of identity, psychological domination, loss of mental privacy, and challenges for notions of autonomy and patient benefit when applied to merged minds. While radical technologies may seem to necessitate new ethical paradigms, the authors suggest the individual-focus underpinning clinical ethics can largely accommodate varying degrees of mind mergers so long as individual patient interests remain identifiable. However, advanced decisionmaking and directives may have limitations in addressing the dilemmas posed. Overall, mind-merging possibilities amplify existing challenges around loss of identity, relating to others, autonomy, privacy, and the delineation of patient interests. This paper lays the groundwork for developing resources to address the novel issues raised, while suggesting the technologies reveal continuity with current healthcare ethics tensions.
Inequality in body sizes is a common feature in populations of helminth parasites, with potential consequences for egg production and population genetics. Inequalities in body lengths and the effects of intraspecific competition on worm length were studied in a species of mermithid nematode parasitic in the crustacean Talorchestia quoyana (Amphipoda: Talitridae). The majority of the 753 worms recovered were relatively small, and an analysis using a Lorenz curve and Gini coefficient suggested that there were no marked inequalities in body lengths among the worms. Total worm length in the 356 infected amphipods (i.e. the sum of the lengths of all the worms in a host) increased steadily as a function of the number of worms per amphipod, whereas the length of the longest worm per amphipod peaked in amphipods harbouring intermediate numbers of worms. This last result was not significantly accounted for by the observed increase in host size with increasing intensity of infection, but resulted from a correlation between worm length and host size. As the number of worms per amphipod increased, the relative sizes of the second-, third-, and fourth-longest worms per host increased markedly. This means that relative inequalities in sizes become less pronounced, i.e. subordinate worms get closer in size to the longest worm, as the number of worms per host increases. The main consequence of this phenomenon is that worm sizes in the mermithid population are more homogeneous than they would be if intraspecific competition had stronger effects on worm growth.
The biogenic elements zinc, manganese and cobalt are essential for metabolic processes in animals. Compounds of nGly.Me2+A. mH2O (Me2+=Zn2+, Mn2+, Co2+; A=Cl−, SO42−, n=1, 2; m=2, 5), as supplements in the diet, were used separately on different experimental groups of male Hisex chickens to correct the mineral deficiency caused by Ascaridia galli infections. An amelioration of body weight gain, reduction of mortality and restoration of trace element levels were estimated in infected chickens. A mathematical model has been proposed for A. galli population kinetics in chickens, taking into account the stimulating effect of these elements on the nematodes. The model parameters are considered as phenomenological constants of the host–parasite system. An agreement with experimental data is observed using, for the parameters ψ, α, μ and μs, values equal to those calculated in previously investigated A. galli–chicken systems. For parameter ν (immunological constant) the same value was obtained as in a previous experiment with high infection. This model is likely to be suitable for a range of host–nematode systems, including varying degrees of infection and treatment with different trace elements.
Anisakid nematodes belonging to the Anisakis simplex complex are highly prevalent in several fish species off the coast of Portugal and are an important zoonotic problem in the Iberian Peninsula. Two reproductively isolated sibling species of the Anisakis simplex complex were identified from Pleuronectiformes inhabiting the Portuguese coast using restriction fragment length polymorphism (RFLP). Recombinant genotypes corresponding to presumptive Anisakis simplex sensu stricto and Anisakis pegreffii hybrids were also detected by this technique, as well as the species Anisakis typica. Although 25 species of Pleuronectiformes were investigated, Anisakis spp. larvae were only found in seven: Arnoglossus imperialis, Arnoglossus laterna, Lepidorhombus boscii, Citharus linguatula, Platichthys flesus, Dicologlossa cuneata and Solea senegalensis. The occurrence of hybrids in relatively sedentary fishes such as the Pleuronectiformes suggests that the Portuguese coast may constitute an area of hybridization and, therefore, is of particular interest for the study of the process of hybridization and speciation for these anisakids.
Much interest has centred recently on the role of adaptive trade-offs between the immune system and other components of life history in determining resistance and parasite intensities among hosts. Steroid hormones, particularly glucocorticoids and sex steroids, provide a plausible mechanism for mediating such trade-offs. A basic assumption behind the hypothesis, however, is that steroid activity will generally correlate with reduced resistance and thus greater parasite intensities. Here, we present some findings from a field study of bank voles (Clethrionomys glareolus) in which we have looked at associations between parasite intensities, anatomical and morphometric measures relating to endocrine function and life history variation in three local populations inhabiting similar but mutually isolated woodland habitats. In general, sites with greater parasite intensities were those in which male C. glareolus had significantly larger adrenal glands, testes and seminal vesicles for their age and body size. Females also showed a site difference in adrenal gland weight. Some aspects of site-related parasite intensity were associated with asymmetry in adrenal gland weight and hind foot length, which may have reflected developmental effects on glucocorticoid activity.
Clonorchis sinensis, the Chinese or oriental liver fluke, is an important human parasite and is widely distributed in southern Korea, China (including Taiwan), Japan, northern Vietnam and the far eastern part of Russia. Clonorchiasis occurs in all parts of the world where there are Asian immigrants from endemic areas. The human and animal reservoir hosts (dogs, pigs, cats and rats) acquire the infection from the ingestion of raw fish containing infectious metacercariae. The first intermediate snail hosts are mainly species of Parafossarulus and Bithynia. Numerous species of freshwater fish serve as the second intermediate hosts of C. sinensis. Extensive studies of clonorchiasis during several decades in Japan, Korea, China and other countries have shown much progress in proving its morphological features including ultrastructure, biology, pathogenesis, epidemiology, clinical manifestations and chemotherapy. The present review deals with mainly current results obtained on the epidemiological, pathological and clinical aspects, as well as control measures in endemic areas. As for the complications of clonorchiasis, formation of calculi in the intrahepatic biliary passages is one of the most characteristic pathological features. It is sometimes accompanied by suppurative cholangitis, cholecystitis, cholangiohepatitis and ultimately can cause cholangiocarcinoma. Experimental results on the relationship to the occurrence of cholangiocarcinoma are presented. Clinical diagnosis by radiological findings including cholangiography, sonography and computerized tomography as well as magnetic resonance imaging for biliary or pancreatic ducts are outlined. Current studies on immunology and molecular biology of C. sinensis were introduced. Praziquantel is the drug of choice for clonorchiasis. The most effective regimen is 25 mg kg−1 three times daily (total dose, 75 mg kg−1) administered orally at 5- to 6-h intervals over a single day. Prevention and control measures are also discussed.
At present, the genus Trichinella comprises seven species of which five have encapsulated muscle larvae (T. spiralis, T. nativa, T. britovi, T. nelsoni and T. murrelli) and two do not (T. pseudospiralis and T. papuae) plus three genotypes of non-specific status (T6, T8 and T9). The diagnostic characteristics of these species are based on biological, biochemical and genetic criteria. Of biological significance is variation observed among species and isolates in parameters such as infectivity and immunogenicity. Infectivity of Trichinella species or isolates is determined, among other considerations, by the immune status of the host in response to species- or isolate-specific antigens. Common and particular antigens determine the extent of protective responses against homologous or heterologous challenge. The kinetics of isotype, cytokine and inflammatory responses against T. spiralis infections are isolate-dependent. Trichinella spiralis and T. pseudospiralis induce different dose-dependent T-cell polarizations in the early host response, with T. spiralis initially preferentially promoting Th1-type responses before switching to Th2 and T. pseudospiralis driving Th2-type responses from the outset.
Adult Fasciola gigantica are leaf-shaped with tapered anterior and posterior ends and measure about 35 mm in length and 15 mm in width across the mid section. Under the scanning electron microscope its surface appears rough due to the presence of numerous spines and surface foldings. Both oral and ventral suckers have thick rims covered with transverse folds and appear spineless. On the anterior part of the ventral surface of the body, the spines are small and closely-spaced. Each spine has a serrated edge with 16 to 20 sharp points, and measures about 20 μm in width and 30 μm in height. In the mid-region the spines increase in size (up to 54 μm in width and 58 μm in height) and number, especially towards the lateral aspect of the body. Towards the posterior end the spines progressively decrease in both size and number. The tegumental surface between the spines appears highly corrugated with transverse folds alternating with grooves. At higher magnifications the surface of each fold is further increased with a meshwork of small ridges separated by variable-sized pits or slits. There are three types of sensory papillae on the surface. Types 1 and 2 are bulbous, measuring 4–6 μm in diameter at the base with nipple-like tips, and the type 2 also have short cilia. Type 3 papillae are also bulbous and of similar size but with a smooth surface. These sensory papillae usually occur in clusters, each having between 2 and 15 units depending on the region of the body. Clusters of papillae on the lateral aspect (usually types 1 and 2) and around the suckers (type 3) tend to be more numerous and larger in size. The dorsal side of the body exhibits similar surface features, but the spines and papillae appear less numerous and are smaller. Corrugation and invaginations of the surface are also less extensive than on the ventral side of the body.
Cathepsin L proteinases (CL1 and CL2), the major components of Fasciola hepatica excretion/secretion products (E/S) are considered potential antigens of a vaccine against fascioliasis. The humoral response elicited by CL1 and CL2 in rats either immunized with the enzymes or infected with F. hepatica has been analysed, examining specific IgE and IgG subclass dynamics. The experiment was continued for 10 weeks and peripheral blood eosinophilia was also determined. Infected rats presented peaks of eosinophilia at weeks 3 and 7 post-infection, while those immunized with CL1 and CL2 were no different from controls. Total IgE in infected rats increased up to week 5, reaching 30 μg -1 in some cases, then decreased slowly and rising again towards the end of the experiment. Determination of specific IgE, carried out in sera previously absorbed with Protein G-Sepharose, reached a peak in infected rats between weeks 2 and 5, depending on the individual. In immunized rats both total and specific IgE levels remained around the pre-immunization values. With regard to the IgG subclass responses to E/S products, in infected rats IgG1 predominated over IgG2a, and the reverse was true in rats immunized with CL1 and CL2 and tested against the respective antigens. In all cases an increase in IgG1 and IgG2a antibody titres was seen, with maximum levels being reached later (weeks 6–7) in infected rats than in immunized ones (weeks 4–5). No IgG2b or IgG2c responses were detected in any of the groups studied.
The ultrastructure of the flame cells, capillaries, collecting tubes, excretory bladder, excretory atrium, caudal vesicle, lateral caudal ducts and excretory pores of cercariae of Bucephaloides gracilescens (Rudolphi, 1819) Hopkins, 1954 and Prosorhynchus squamatus Odhner, 1905 (Digenea: Bucephalidae) is described. Both species are essentially similar except for some details. The terminal parts of the protonephridia have all the structural features that are typical of trematodes. The collecting tubes in the cercarial body are composed of cells that are wrapped around the lumen. The main collecting tubes are joined to the excretory bladder syncytium by septate junctions. Features of P. squamatus excretory bladder epithelium indicate that it is involved in secretory activity, but this is not the case in B. gracilescens. In both species the luminal surface of the excretory bladder epithelium is increased by lamellae, and the basal plasma membrane forms invaginations. In the bladder syncytium of P. squamatus both apical lamellae and basal invaginations are more developed and mitochondria are also more numerous. The excretory atrium is lined by a syncytium with nucleated cytons located in the surrounding parenchyma. The atrium lining is not continuous with the body tegument and possesses specific secretory inclusions and a thick glycocalyx. Septate junctions connect the atrium syncytium to the excretory bladder epithelium at its anterior end and to the syncytial excretory epithelium lining the caudal vesicle and the lateral caudal ducts at its posterior. In the excretory pores the caudal duct syncytium is joined to the tegument by septate desmosomes.
An in vitro study was carried out to determine efficacy of Indian isolates of the nematode-trapping fungi Arthrobotrys musiformis and Duddingtonia flagrans to capture infective larvae of Haemonchus contortus. These fungi have previously been screened and selected for their survival in the gastrointestinal tract of sheep without losing growth and nematode capturing potential. Following the feeding of chlamydospores of these two fungi alone or in combination in sheep experimentally infected with Haemonchus contortus, coprocultures were set up to enumerate the infective third stage larvae. The number of larvae captured from faeces of fungus-fed sheep was significantly higher compared with fungus-unfed controls irrespective of the fungus used. The fungal combination produced no antagonistic effect and thus can be used as efficiently as the fungi alone in the biological control of animal parasitic nematodes.
The in vitro effects of extracts of four tropical plants (Zanthoxylum zanthoxyloides, Newbouldia laevis, Morinda lucida and Carica papaya) on the egg, infective larvae and adult worms of Trichostrongylus colubriformis were screened for potential anthelmintic properties. Significant effects were observed with the four plants on T. colubriformis but they differed depending on the stage of the parasite. Extracts of each plant induced a dose-dependent inhibition of egg hatching. Using a larval inhibition migration test, the effects on the infective larvae were also detected with the four plant extracts. In contrast, for adult worms, the effects were statistically significant only for N. laevis and C. papaya. No significant activity was shown for M. lucida and Z. zanthoxyloides. These in vitro results suggest the presence of some anthelmintic properties associated with these four plants, which are traditionally used by small farmers in western Africa. These effects need to be studied under in vivo conditions.
This Special Issue denotes the first comprehensive attempt to place business and human rights-related (BHR) developments in the Central and Eastern Europe (CEE) region on the map of global discussions in BHR. The CEE is a geographical area that is historically, politically, socio-economically, geo-strategically and culturally distinct from other regions, including Western Europe. Hence, this Special Issue explores the region’s specific elements and factors and how they affect and influence the implementation and embedding of human rights in the practice of business enterprises in the region. The ‘Scholarly Articles’ and ‘Developments in the Field’ pieces collected in this issue highlight the promising and not-so-promising developments and practices of state institutions, business enterprises, and other actors. It documents the current situation in the region and outlines ideas and prospects for addressing the identified challenges over the next decade. As an introduction to the Special Issue, this editorial outlines the region’s leading trends and prospects in BHR. It reflects on persisting challenges and notes the region’s progress in BHR awareness, knowledge and capacity in recent decades.
In this paper, we investigate the asymptotic distribution of a class of multiplicative functions over arithmetic progressions without the Ramanujan conjecture. We also apply these results to some interesting arithmetic functions in automorphic context, such as coefficients of automorphic L-functions, coefficients of their Rankin–Selberg.
Fourteen pregnant rabbits were each infected with 300 cercariae of Schistosoma japonicum and divided into two groups. Group M (n = 8) was infected during mid-gestation (the organogenetic stage) and group L (n = 6) was infected during late-gestation (the post-organogenetic stage). Mother rabbits and rabbit kittens were killed 45–60 days after infection and perfused in order to obtain worm counts. Furthermore, faecal egg counts and tissue egg counts from livers were obtained from the mother rabbits as well as the rabbit kittens. All mother rabbits became infected harbouring 207.6 ± 20.2 and 220.0 ± 27.5 adult worms in group M and L, respectively. In groups M and L, 13.5% and 46.7% of the kittens were infected, respectively. In 12 of 14 litters at least one kitten was infected. The infected kittens harboured between one and three adult S. japonicum. The livers of the kittens infected with a worm pair displaced lesions as a result of egg deposition. The results, therefore, show that congenital transmission of S. japonicumcan occur in rabbits. The close anatomical resemblance between the rabbit and human placenta may be indicative of the presence of congenital transmission of S. japonicum infection in humans.
Elaphostrongylus cervi Cameron, 1931 was identified in six Cervus elaphus hispanicus sampled in Cuenca, central Spain. A total of 23 adult worms were found in the central nervous system with a mean of 3.8. Although E. cervi is reported to be widespread in cervids, this is the first time it has been recorded in Spanish red deer.
The 18S rDNA gene of adult worms of Taenia parva found in Genetta genetta in the Iberian Peninsula and larval stages of T. pisiformis from the wild rabbit (Oryctolagus cuniculus) in Tenerife (Canary Islands) were amplified and sequenced. The sequences of the 18S rDNA gene of T. parva (1768 bp) and T. pisiformis (1760 bp) are reported for the first time (GenBank accession nos. AJ555167–AJ555168 and AJ555169–AJ555170, respectively). In 168 alignment positions microsatellites in the 18S rDNA of both taxa were detected for the first time (TGC in T. parva and TGCT in T. pisiformis) and differences in their sequences with different repetition numbers were observed. The use of nucleotide sequences of this gene in the resolution of systematic problems in cestodes is discussed with reference to the systematic status of Taenia spp. and mainly in human taeniids such as T. solium, T. saginata, and Asian human isolates of Taenia.