To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A comparative study is reported in which kaolinite has been hydrothermally synthesized at several pH conditions. The syntheses were carried out at 220 °C for 3 to 10 d with distilled water or acidic solutions using a mixture of silica-gel derived from alkoxide and gibbsite with a Si/Al ratio of 1:1 as the starting material. Use of acidic solution for the synthesis promotes the dissolution of the starting materials and leads to kaolinitization at an earlier stage of the reaction. However, the rate of kaolinitization is found to be rather slow, in comparison to the reaction with distilled water. The synthetic kaolinite was characterized by X-ray powder diffraction pattern. Kaolinite synthesized with distilled water was poorly grown for direction of the stacking. For example, crystallite size along the c*-axis = 155 Å, whereas kaolinite synthesized with acidic solution gave a higher crystallite size along the c*-axis, such as 253 Å in the case of the synthesis with 0.1 N HCl. Hinckley index of the synthetic kaolinite was varied from 0.35 to 0.80 by the acidity of the reaction. Different kaolinitization processes are implied by differences observed in the rate of kaolinitization, which has an influence on the nature of the stacking faults of the kaolinite.
Hydrothermal treatment of aqueous mixtures of sodium hydroxide, copper chloride and excess sodium silicate (Si/Cu ≥ 2) at 150 °C produced blue powders. Scanning electron microscopy/energy dispersive X-ray (SEM/EDX) analysis of the products show they all had similar chemical compositions, with Si/Cu ratios of approximately 1.33, the value expected for 2:1 trioctahedral phyllosilicates. Their X-ray diffraction (XRD) patterns were consistent with that of swelling smectite-type clays. Reaction mixtures that did not contain excess Si (Si/Cu ≤ 1.33) did not produce smectites. They gave gray mixtures of amorphous silicates and copper oxides, with some phyllosilicates. A mixture containing a Si/Cu ratio of 5.2 heated at 250 °C under 500 psi of Ar gave a pale blue solid containing a Si/Cu ratio of approximately 1, the value expected for chrysocolla. Transmission electron microscopy (TEM) showed this product had a well-ordered layered structure. Its XRD powder pattern was consistent with that of chrysocolla. This clay did not swell very much on exposure to glycol vapors. Peaks were observed in the cyclic voltam-mogram of electrodes modified with films of these synthetic Cu-clays. They were attributed to electrochemical activity of Cu(II) centers in the lattice of the clays. The presence of these redox active Cu(II) sites greatly improved charge transport in the films. Much larger voltametric waves were observed for [Os(bpy)3]2+ ions (“bpy” = the ligand 2,2′bipyridyl) adsorbed in films of the synthetic Cu-clays than in films of a natural montmorillonite. The larger peak currents obtained corresponded to 10- to 15-fold increases in the fractions of the adsorbed ions that were electrochemically oxidizable in the modified electrodes.
Small-angle X-ray scattering (SAXS), adsorption and nuclear magnetic resonance (NMR) techniques were used to determine the fractal dimensions (D) of 3 natural reference clays: 1) a kaolinite (KGa-2); 2) a hectorite (SHCa-1), and 3) a Ca-montmorillonite (STx-1). The surfaces of these clays were found to be fractal with D values close to 2.0. This is consistent with the common description of clay mineral surfaces as smooth and planar. Some surface irregularities were observed for hectorite and Ca-montmorillonite as a result of impurities in the materials. The SAXS method generated comparable D values for KGa-2 and STx-1. These results are supported by scanning electron microscopy (SEM). The SAXS and adsorption methods were found to probe the surface irregularities of the clays while the nuclear magnetic resonance (NMR) technique seems to reflect the mass distribution of certain sites in the material. Since the surface nature of clays is responsible for their reactivity in natural systems, SAXS and adsorption techniques would be the methods of choice for their fractal characterization. Due to its wider applicable characterization size-range, the SAXS method appears to be better suited for the determination of the fractal dimensions of clay minerals.
Shortly after construction of a subdivision in the southwest Denver metropolitan area in 1986, a portion of the subdivision built directly on steeply-dipping strata of the Pierre Shale began experiencing damaging differential movements, causing house foundations to fail and pavements to warp and crack. This formation is a Late Cretaceous marine clay-shale composed predominantly of fluvial mixed-layer illite/smectite and quartz. During deposition of the shale, periodic and explosive volcanism generated thin beds of bentonite, consisting initially of volcanic ash and subsequently altered to nearly pure smectite. Some of these bentonite beds were exposed in a trench adjacent to the subdivision and perpendicular to the strike of the steeply-dipping strata. The thickest bentonite beds correlated well with linear heave features that these beds parallel the bedrock strike throughout the subdivision were mapped via severely deformed pavements. Mineralogical data show the bentonite bed that correlates with the worst damage within the subdivision consists of about 62% smectite by weight with mixed-layer illite/smectite expandability of 92%. By comparison, a sample of the typical silty claystone, which is fluvial mixed-layer illite/smectite mixed with detrital quartz from the adjacent strata, had about 23% smectite by weight with 70% to 90% illite/smectite expandability. Geotechnical tests for swell potential show that samples of 2 bentonite beds swelled 39% to 43% compared to 2% to 8% for samples of the typical silty claystone. It is proposed that differential swell resulting from stratigraphically-controlled differences in clay mineralogy and grain-size is the primary factor controlling extreme damage for this geologic setting.
Novel promising modified clays adsorbents were synthesized by intercalating hydroxy-Al polymer associated with poly(ethyleneoxide) in the interlayer of montmorillonite. Two different PEOs of low molecular weight (600) and high molecular weight (100,000) were used. In both cases, the resulting materials are hydrolytically stable and display a slightly better crystallinity than the materials prepared in the absence of PEO. Thermal analysis and infrared spectroscopy indicate changes in the PEO molecular conformation after intercalation revealing interactions between the polycations and the organic molecules. The chain length of the polymer has a strong influence on the surface area of the pillared materials obtained after calcination at 500°C. The use of the high molecular weight polymer leads to products with a higher specific surface area (about 400 m2/g) whereas the lower molecular weight compound does not modify significantly the surface areas. This behavior can be explained by the different nature of the species intercalated in the interlayer. PEO(600) leads to isolated organometallic species whereas PEO(100,000) seems to lead to a network of complexed polycations linked by ethylene oxide units. In the case of the PEO(100,000), high amounts of polymer in the pillaring solution provoke a partial dissolution of the octahedral layer of the clay.
Transmission electron microscopy (TEM) and analytical electron microscopy (AEM) methods were used to study the crystal chemistry of phyllosilicates occurring in green grains of Miocene sediments from the Congo continental shelf. Using diagrams based on wt. % K and the (Fe + Mg)/Al ratio, minerals were distinguished from mixed-layer phases. The most abundant detrital mineral is Fe-kaolinite. The morphology and composition identify this mineral as a component of ferralitic soils. This Fe-rich kaolinite has undergone a complex process of partial dissolution and recrystallization and further enrichment in Fe and, to a lesser extent, in Mg in the marine environment. The detrital mica observed with TEM retains the original morphology and chemistry of muscovite. Alteration processes resulted in the crystallization of 1:1 trioctahedral Fe2+ and Mg-rich minerals and interstratified phases with 1:1 and 2:1 layers in varying proportions observed with the aid of high-resolution transmission electron microscopy (HRTEM) imaging. Included among the newly formed 7-Å phases are those apparently containing excess Si. The smectites are apparently neoform, and chemical analyses showed that these marine K-smectites belong to the beidellite-nontronite series and have tetrahedral substitutions similar to muscovite. Their compositions are closer to beidellite than to nontronite, although the latter was observed in association with goethite. The TEM observations and crystallochemical data show that mineral alteration ceased after forming mixed-layer minerals, and alteration did not reach the glauconitization stage. Apparently, the Miocene assemblages experienced rapidly changing environmental conditions and high sedimentation rates that continue today.
The nature, composition, and relative abundance of clay minerals in the sandstones of the Brent Group reservoir were studied between 3200–3300 m in a well of the Ellon Field (Alwyn area, North Sea). The sandstones have a heterogeneous calcite cement which occurred during early-diagenesis. Clay diagenesis of the cemented and uncemented sandstones was investigated using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction analyses (XRD), and infrared spectroscopy (IR). The influence of cementation on clay neoformation is demonstrated in this study. Detrital illite and authigenic kaolinite are present in both the calcite-cemented and uncemented sandstones suggesting that kaolinite precipitated before calcite cementation. In the uncemented sandstones, blocky dickite replaces vermiform kaolinite with increasing depth. At 3205 m, authigenic illite begins to replace kaolinite and shows progressive morphological changes (fibrous to lath-shape transition). At 3260 m, all sandstones are not cemented by calcite. Illite is the only clay mineral and shows a platelet morphology.
In the cemented samples, vermiform kaolinite is preserved at all depths, suggesting that dickite transformation was inhibited by the presence of the calcite cement. This observation suggests that calcite cement would prevent fluid circulation and dissolution-precipitation reactions.
Clay samples of greenish colour were collected from submarine hydrothermal chimneys of the Galapagos Rift and Mariana Trough. Mineralogical and chemical investigations of the clay by scanning and transmission electron microscopy, X-ray diffraction, differential thermal analysis, infrared-spectros-copy, X-ray fluorescence, and determination of specific surface area, and oxygen isotope composition identify it as a well crystallized nontronite. This nontronite of hydrothermal origin has a nearly monomineralic character, a low Al-content, and a formation temperature of 21.5 to 67.3°C. The most remarkable characteristic, however, of the nontronite deposit is its microstructure, a network of microtubes composed of fine frequently folded clay sheets. These delicate filaments show close similarity in size and form to sheath forming bacteria. The correlation between clay mineral and chemical characteristics, as well as biological conditions at marine hydrothermal smoker chimneys, let us suggest that Fe oxidizing, sheath forming bacteria are playing a decisive role in nontronite formation at these sites.
Illitization of smectite during progressive burial diagenesis occurs differently in sandstone and mudstone, which are interbedded in the sedimentary sequence of the Niigata basin. Reaction progress of illitization of smectite via mixed-layer illite-smectite (I-S) in the mudstone is more complete than in the sandstone. In sandstone, smectite converts to (Reichweit, R ≥ 3) I-S and illite via random (R = 0) I-S to ordered (R = 1) I-S, and authigenic chlorite and quartz form as products of the illitization of smectite.
The original composition of detrital smectite and the occurrence of Na+, K+, Ca2+, Mg2+, and Fe2+ in pore fluids partly control both illitization of smectite and the resulting authigenic mineral products in the diagenetic process. In mudstone, detrital smectite is K- and Si-rich in composition, and the illitization of smectite indicates that the original composition is mostly inherited. Excess silica owing to illitization is released to produce authigenic quartz. In sandstone, smectite forms primarily by precipitation. The evolving compositions produced by early illitization form smectite, then random (R = 0) I-S, and then ordered (R = 1) I-S. These transitions are related to compositions of pore fluid. Changes in K/(K + Ca + Na) vs. K + Ca + Na imply that the increase of interlayer cations occurs by absorption and smectite transforms to random (R = 0) I-S, followed by the exchange of interlayer cations to ordered (R = 1) I-S with increasing diagenetic grade. Late illitization from (R = 1) I-S to R ≥ 3 suggests decomposition of smectite and early I-S with an increase in the number of illite layers. Dissolution experiments of host rocks with pure water and 0.01 M HCl solution reflect the differences in chemistry of the original pore fluid and authigenic carbonate in the process of diagenesis of clastic rocks. These results explain how chemical composition produces large variations in transformation temperature of smectite to illite in the diagenetic process.
X-ray diffraction, FTIR, and chemical analyses were performed on clay fractions (1–2 µm, <0.1 µm), separated by means of size fractionations and high-gradient magnetic separation techniques, from a Cryorthod developed in a chlorite-mica schist saprolite. Weathering of large phyllosilicates pre-existing in the saprolite involves physical fragmentation and mineralogical transformations. Chloritic minerals in the coarse fractions were the most affected by physical breakdown, while micas were generally preserved. As a consequence, a concentration of mica layers occurred in the coarse clay fraction, while chloritic residues accumulated in the fine clays. These residues exhibited the typical XRD pattern of hydroxy-interlayered intergrade minerals, but the interlayered contaminants were found to be mainly hydroxy-Mg cations. Further mineralogical transformations of the intergrade minerals involved the progressive removal of the hydroxide interlayered sheet and dissolution of chloritic layers. Illite/smectite mixed-layers were formed in the surface horizon of the soil profile. These processes were associated with a strong decrease in Fe and Mg contents in the clay fractions.
Alteration experiments have been performed using RTT7 and synthetic basaltic glasses in MgCl2−CaCl2 salt solution at 190°C. The duration of experiments ranged from 0.25 to 463 days. The alteration products were studied by Scanning Electron Microscope (SEM), Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD) and Electron Spectrometry for Chemical Analysis (ESCA). For both glasses, the early alteration product is a hydrotalcite-like compound [Mg6Al2CO3(OH)16·4H2O] in which HPO42−, SO42− and Cl− substitutes for CO32−. The measured basal spacing is 7.68 Å for the hydrotalcite formed from R7T7 glass and 7.62 Å for the hydrotalcite formed from basaltic glass which reflect the high Al/Al + Mg ratios x (0.34 ≤ x ≤ 0.46). The chemical microanalyses show that the hydrotalcite is subsequently covered by a silica-rich gel which evolves into saponite after a few months. These results support the use of basaltic glasses alteration patterns in Mg-rich solution, to understand the long-term behavior of R7T7 nuclear waste glass.
Care home residents were vulnerable to severe effects from Covid-19 infection and experienced high mortality, especially early in the pandemic. In response, many countries introduced visiting restrictions to limit transmission. These often proved extensive and prolonged, drawing fresh attention to issues of autonomy and human rights in long-term care. We conducted in-depth interviews with 27 family carers in England with relatives living in a care home during the pandemic. Adopting a relational autonomy lens, conceptualised using the capability approach, we examined how family carers considered their relatives’ capabilities to have been impacted by visiting restrictions and how relational support could be strengthened. Family carers were concerned for their relative’s fundamental capabilities, including physical health, emotional well-being, and feeling connected to significant others. Capability deprivations were associated with family separation, ‘adapted’ visits that were inappropriate for their relative’s needs, and lack of opportunity for family carers’ to provide emotional support, help staff identify their relative’s emotional and physical needs, monitor care standards or advocate for their relative. Optimising relational support during a public health emergency requires effective collaboration between care homes and family carers. Specific measures include (1) ensuring there is clarity, a sense of shared purpose, clear accountability and confidence in visiting restrictions, (2) providing family carers regular, personalised updates about their relative using a range of digital communication tools, (3) allowing choice about visiting arrangements where possible, and ensuring visits are appropriate for residents with dementia and (4) ensuring that family carers feel welcomed, involved and enabled to resume in-person visits at the earliest opportunity. Consultation with care homes, families and residents, and workforce and digital readiness should be prioritised.
The crystal structure of a natural, ordered IIb-4 triclinic clinochlore has been refined in space group C1̄ from 4282 unique X-ray intensity measurements of which 3833 are greater than 3 times the statistical counting error (3σ). Unit cell parameters are a = 5.3262(6) Å; b = 9.226(1) Å; c = 14.334(3) Å; α = 90.56(2)°; β = 97.47(2)°; and γ = 89.979(9)°, which represents the greatest deviation from mono-clinic symmetry yet recorded for a triclinic chlorite. The final weighted R is 0.059 for reflections with I > 3σ and 0.064 for all reflections. The chemical formula is (Mg0.966Fe0.034)MI(Mg0.962Fe0.038)M22(Si2.96Al1.04)O10 (OH)2(Mg0.996Fe0.004)M32(Al0.841FeIII0.102Cr0.004Ti0.004)M4(OH)6, which is consistent with electron microprobe (EMP), wet chemical analyses, Mössbauer spectroscopy and X-ray structure refinement. The high degree of ordering of the divalent versus trivalent octahedral cations in the interlayer is noteworthy, with FeIII and Al in M4 and virtually no Fe in M3. In the 2:1 layer, M1 and M2 each contain similar amounts of Fe. The 2 tetrahedral sites have nearly identical mean oxygen distances and volumes, and thus show no evidence of long-range cation ordering.
The Late Westphalian to Artinskian Haushi Group in the Sultanate of Oman consists of the glaciogenic Al Khlata Formation and the Gharif Formation which contains marginal marine, coastal plain, and fluvial sediments. The sequence was deposited during a global-warming event following the Permo-Carboniferous glaciation of Gondwana. Because of a varied subsidence history, these sediments range from the surface in the SE to almost 5000 m in the NW of the basin.
Mixed-layer illite-smectite (I-S) is an important constituent of the <2 µm size fraction of sandstone and shale samples in both formations at all depths. Different starting compositions lead to three distinct trends of illite layers in I-S versus temperature for different sedimentary environments and paleoclimatic conditions. The starting compositions of I-S at the surface range from an ordered I-S in the Al Khlata Formation to smectite-rich in the Upper+Middle Gharif members.
Physical, chemical and environmental factors were investigated as causes for the different starting compositions of I-S. Both formations share an identical burial history, paragenesis, thermal evolution, and source of detrital material. They differ only in environmental conditions during sedimentation. Thus, the variation in starting composition of I-S appears to be best explained by distinct weathering conditions during sedimentation of the three units. In particular, the expected low intensity of chemical weathering during glaciogenic conditions is marked by the presence of higher amounts of unstable volcanic and sedimentary rock fragments in the Al Khlata Formation.
Redox properties of iron-bearing mineral surfaces may play an important role in controlling the transport and transformation of pollutants into ground waters. Suspensions of seven iron-bearing minerals were reacted with pH and redox indicators under anaerobic conditions at the pH of the natural suspension. The responses of the indicators to the mineral surfaces were monitored by UV-visible spectroscopy using a scattered transmission technique. The Hammett surface acidity function (Hs) and the surface redox potential (Ehs) of these iron-bearing minerals were measured. These measured values were used to calculate Eh values for the seven minerals: goethite = +293 mV; chlorite = +290 mV; hematite = +290 mV; almandite = +282 mV; ferruginous smectite = +275 mV; pyrite = +235 mV; and Na-vermiculite = +223 mV. Calculated surface redox potentials of minerals are different from their potentials measured by platinum electrode in bulk suspensions. UV-visible spectroscopy provides a quick and non-destructive way of monitoring organic probe response at the mineral surface.
The effect of freezing and thawing on the rheological behavior of illite suspensions was studied by examining viscosity and plasticity. Stability of suspensions was characterized by a hysteresis loop of thixotropy. Thermal gravimetric and differential scanning calorimetry analysis were also used. After initial freezing and thawing, the flow curves of the suspensions show an increased viscosity, an “irregular up line”, and a greater hysteresis loop of thixotropy. The ratios of mean viscosity of previously frozen (F) and control (O) samples (ηF/ηO) for non-expandable 2:1 phyllosilicates ranges from 1.3 to 2.1. Addition of monovalent (0.1% Na2SiO3) and divalent cations (0.3% CaCl2 or BaCl2) increase and decrease the shear-stress difference between F and O samples, respectively. Prior freezing of clay samples results in an increase of plasticity by ∼20–30%. The thermal analysis data of F samples show an increase in weight loss, and a decrease in enthalpy of dehydration. The changes of physico-chemical properties from cycles of freezing and thawing are long lasting. The freezing memory effect of illite-type clays is expected to play an important role in ceramic processing, i.e., casting processes, plastic formation, and sintering.
The decomposition of kaolinite by treatment with trimethyl phosphate (TMP) and the composition of the new crystalline phase formed were studied. On hot treatment with TMP, kaolinite forms a crystalline white compound that is soluble in hot water. The X-ray diffraction pattern of the kaolinite treated shows both the typical reflections of kaolinite and, furthermore, a very strong reflection at 8.84 Å. After 30 days of treatment with TMP, the silicate structure of kaolinite is completely destroyed and a crystalline phase identical with that resulting from treatment of aluminium oxide (Al2O3) with TMP is formed. The results show that the compound in question is formed by hydrolysis of TMP, catalyzed by the hydration water of exchange cations of kaolinite, followed by removal of Al from the silicate structure by incompletely hydrolyzed TMP. The new crystalline phase thus formed is an aluminium alkyl phosphate of formula Al(CH3)6(PO4)3.
X-ray absorption spectroscopy (XAS) was used to determine the local molecular environment of Co(II) surface complexes sorbed on three different kaolinites at ambient temperature and pressure in contact with an aqueous solution. Interatomic distances and types and numbers of backscattering atoms have been derived from analysis of the extended X-ray absorption fine structure (EXAFS). These data show that, at the lowest amounts of Co uptake on kaolinite (0.20–0.32 µmol m−2), Co is surrounded by ≈6 O atoms at 2.04–2.08 Å and a small number or Al or Si atoms (N = 0.6–1.5) at two distinct distances, 2.67–2.72 Å and 3.38–3.43 Å. These results indicate that Co bonds to the kaolinite surface as octahedrally coordinated, bidentate inner-sphere mononuclear complexes at low surface coverages, confirming indirect evidence from solution studies that a fraction of sorbed Co forms strongly bound complexes on kaolinite. In addition to inner-sphere complexes identified by EXAFS spectroscopy, solution studies provide evidence for the presence of weakly bound, outer-sphere Co complexes that cannot be detected directly by EXAFS. One orientation for inner-sphere complexes indicated by XAS is bidentate bonding of Co to oxygen atoms at two Al-O-Si edge sites or an Al-O-Si and Al-OH (inner hydroxyl) edge site, i.e., corner-sharing between Co octahedra and Al and Si polyhedra. At slightly higher surface sorption densities (0.51–0.57/ µmol m−2), the presence of a small number of second-neighbor Co atoms (average NCo < 1) at 3.10–3.13 Å indicates the formation of oxy- or hydroxy-bridged, multinuclear surface complexes in addition to mononuclear complexes. At these surface coverages, Co-Co and Co-Al/Si distances derived from EXAFS are consistent with edge-sharing between Co and Al octahedra on either edges or (001) faces of the aluminol sheet in kaolinite. Multinuclear complexes form on kaolinite at low surface sorption densities equivalent to <5% coverage by a monolayer of oxygen-ligated Co octahedra over the N2-BET surface area. These spectroscopic results have several implications for macroscopic modeling of metal ion uptake on kaolinite: 1) Primary binding sites on the kaolinite surface at low uptake are edge, non-bridging Al-OH inner hydroxyl sites and edge Al-O-Si bridging oxygen sites, not Si-OH sites typically assumed in sorption models; 2) specific adsorption of Co is via bidentate, inner-sphere complexation; and 3) at slightly higher uptake but still a small fraction of monolayer coverage, formation of Co multinuclear complexes, primarily edge-sharing with Al-OH octahedra, begins to dominate sorption.