To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A new osmotic-swelling system for montmorillonite with formamide (FA) is described. Water and a variety of polar organic liquids were used to swell FA-montmorillonite complexes. The post-swelling behavior of the complex is interpreted in terms of the bi-functionality of FA as an electron donor/acceptor and the magnitude of the donor number (DN) of the polar liquid relative to that of FA. The FA-montmorillonite complex shows limited swelling of d(001) <2.3 nm for polar liquids with DNs larger than that of FA. In contrast, the FA-montmorillonite complex shows osmotic swelling when the DN of the polar liquid is smaller than that of FA.
Two analogous inorganic-organic hybrids with a phyllosilicate-like structure SILMg1 and SILMg2, containing 3-aminopropyl- and N-propylethylenediaminetrimethoxysilane were synthesized through a sol-gel process. These hybrids adsorbed divalent cations of cobalt, nickel, copper, and zinc from aqueous solution to give the effectiveness of adsorption capacities in the sequence Cu2+ > Zn2+ > Ni2+ > Co2+. SILMg1 has a higher capacity of adsorption than SILMg2. Elemental analysis, X-ray diffractometry, thermal analysis, infrared and nuclear magnetic resonance spectroscopies, and energy dispersive system microscopy characterized all hybrids. The proposed adsorption mechanism involves dissolution of the precursor matrix, formation of a phyllosilicate around the adsorbed ion, and a complexation of the cation by the amino-pendant groups in the interlayer. These new phyllosilicates are more crystalline than the original hybrids. The adsorption of Co2+ increases the interlayer distance to maximum values of 1.81 and 2.24 Å for SILMg1 and SILMg2, respectively. Thermal analysis data showed a decrease of thermal stability with cation adsorption. Si-O-Si groups were detected by infrared spectroscopy in all hybrids and a band at 1384 cm-1 was assigned to the nitrate counter anion, which indicates the participation of this ion in the sphere of coordination of the interlayer complexes. The photomicrographs obtained by scanning electron microscopy showed the organized distribution of the sheet structure for these synthesized phyllosilicates.
Molecular dynamics computer simulations were used to study methanol molecules confined between the layers of 2:1 phyllosilicates. The model systems are based on natural Ca- and Na-rich montmorillonites. Data from the literature and determined by fitting the calculated layer spacing to experimental values were employed to obtain interactions between the charged 2:1 layers and the solvent molecules. The montmorillonite surface atoms were held rigid and the methyl group in the methanol molecule was represented by a soft Lennard-Jones sphere. Electrostatic interactions were determined by the Ewald sum method, whereas the van der Waals interactions were described by a Lennard-Jones potential. Comparison of our results with diffraction data indicates a good reproduction of the layer spacing. After the initial solvent layer forms, additional solvent layers form only after previous layers are complete. Each Ca2+ and Na+ ion in the monolayer has four and two methanol molecules, respectively, in the first solvation shell, whereas the solvation shell in the multilayer contains six and four methanol molecules, respectively. This agrees well with experimental data.
Hectorite and saponite are exchanged with [Al13O4(OH)24(H2O)12]7+ and the amount of Al3+ adsorbed and Na+ released are followed as a function of the exchange conditions. On saponite the reaction is a pure ion exchange with 2–2.15 mmol Al3+/g adsorbed and release of 0.80 mmol Na+/g. On hectorite the ion exchange is accompanied by supplementary hydrolysis-polymerization of Al13. When excess Al is offered in the form of Al13, ion exchange is incomplete and is accompanied by precipitation and polymerization of Al13 on the surface of both hectorite and saponite. The typical spacing of 1.8 nm is developed after washing, when at least 1.3–1.4 mmol Al3+/g is adsorbed. Above a loading of 2.2–2.5 mmol/g the 1.8 nm spacing is obtained without washing. Only pillared saponite with a loading of at least 1.9 mmol Al3+/g is thermally stable up to 550°C.
Double hydroxide solids precipitated homogeneously from three laboratory-synthesized aqueous solutions that simulated mildly contaminated surface or groundwater. Over a limited pH range, precipitates formed rapidly from dissolved ions, and more slowly by incorporating ions dissolving from other solids, including highly soluble aluminous solids. The precipitates were characterized by size and shape via transmission electron microscopy (TEM), by composition via inductively coupled plasma-mass spectrometry (ICP-MS) of mother solutions and analytical electron microscopy (AEM) of precipitates, and by structure via powder X-ray diffraction (XRD), TEM, and extended X-ray absorption fine structure (EXAFS) spectroscopy. They were identified as nanocrystalline cobalt hydrotalcite (CoHT) of the form [Co(II)1-xAl(III)x(OH)2]x+(An−x/n)·mH2O, with x = 0.17–0.25, A = CO32−, NO3−, or H3SiO4−n = anion charge and m undetermined. Complete solid solution may exist at the macroscopic level for the range of stoichiometrics reported, but clustering of Co atoms within hydroxide layers indicates a degree of immiscibility at the molecular scale. Composition evolved toward the Co-rich endmember with time for at least one precipitate. The small layer charge in the x = 0.17 precipitate caused anionic interlayers to be incomplete, producing interstratification of hydrotalcite and brucite-like layers. Solubility products estimated from solution measurements for the observed final CoHT stoichiometries suggest that CoHT is less soluble than the inactive forms of Co(OH)2 and CoCO3 near neutral pH. Low solubility and rapid formation suggest that CoHT solids may be important sinks for Co in contact with near neutral pH waters. Because hydrotalcite can incorporate a range of transition metals, precipitation of hydrotalcite may be similarly effective for removing other trace metals from natural waters.
The adsorption of the sulfonylurea herbicide rimsulfuron, [N-((4,6-dimethoxypyrimidin-2-yl)aminocarbonyl)-3-(ethylsulfonyl)-2-pyridinesulfonamide], on clay minerals with different saturating cations was studied. Three smectites with different lattice charge distribution (hectorite, montmorillonite and nontronite) were selected and made homoionic to Ca2+, Cu2+ and Al3+. Because of the instability of rimsulfuron in water, the experiments were carried out in chloroform solution. The interaction mechanism depends on the nature of the saturating cation and the tetrahedral layer charge of the silicate. Among the exchangeable ions studied, only Al3+ is able to produce degradation of the herbicide to N-(4,6-dimethoxypyrimidin-2-yl)-N-[(3-(ethylsulfonyl)-2-pyridinyl]urea. In this case, the lower the tetrahedral charge, the more active the degradation. The Ca2+-saturated clays are ineffective in the degradation. In contrast, the formation of a stable chelate complex with the saturating ion permits rimsulfuron to be adsorbed to a rather high extent into Cu(II)-clays and to be stable against degradation.
When Li-saturated montmorillonite is heated to 200–300 °C, the Li ions migrate from interlayer positions to sites in the layer structure. However, the identity of these sites has not been clearly established. Here we have investigated the migration of Li ions in montmorillonite, after heat treatment at 250 °C, using chemical and instrumental analyses. The latter include X-ray diffractometry (XRD), 7Linuclear magnetic resonance (NMR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Heating causes a large reduction in cation exchange capacity (CEC) and an almost complete loss of interlayer expansion with glycerol as shown by XRD. Static and magic angle spinning (MAS) 7Li-NMR spectroscopy shows that the quadrupole coupling constant of Li increases markedly over the corresponding value for unheated Li-montmorillonite (where Li occupies exchange sites in the interlayer space) and for hectorite (where Li is located in the octahedral sheet). This would indicate that, in heated montmorillonite, Li occupies structural sites of low symmetry which, however, cannot be identified with octahedral vacancies in the layer structure as is commonly assumed. XPS shows that the binding energy (BE) for Li in unheated montmorillonite is comparable to that for other exchangeable cations. Heating broadens the Li 1s band and decreases the BE. The BE for Li in heated montmorillonite is significantly higher than that in either spodumene or lepidolite, where Li is known to occupy octahedral sites. The combined data suggest that heating induces Li to migrate from interlayer sites to ditrigonal cavities in the tetrahedral sheet, rather than into vacancies in the octahedral sheet, of montmorillonite.
An aluminous Ca-montmorillonite from southern Manitoba, Canada, has been shown to generate very low pH values in clay/groundwater slurries over a range of ionic strength of the groundwater (fresh and saline) and temperatures from 25°–90°C. Dialysis experiments as well as results of X-ray diffraction and FTIR vibration spectroscopy point to an acidification mechanism that involves hydrolysis of exchangeable Al3+ ions, thus releasing protons, and the subsequent intercalation of gibbsite-like hydroxy-Al complexes into the smectite lattice forming a non-expandable “Al”-montmorillonite.
Columns for high pressure liquid chromatography were prepared from spray dried samples of montmorillonite that were heated with potassium halides (KTM) to increase both the cation density on the clay surfaces and the expandability of the interlayers. Some of the clay samples were exchanged with Cu before and/or after the potassium halide treatment.
Retention of nitrobenzene and its chloro and methyl derivatives, of methyl substituted phenols and of nitrophenols on these columns was studied, using eluents ranging in polarity from hexane to isopropanol. The retention of the aromatic molecules depends on their specific interaction with active sites on the clay surfaces and on steric effects which limit access to the clay interlayers. Both penetrability and surface interaction are controlled by the composition and method of preparation of the solid phase and by the polarity of the mobile phase. Very strong adsorption of some eluates and efficient chromatographic separations between related substituted benzenes were achieved. Mixtures of the three isomers of cresol, chloronitrobenzene, nitrotoluene or nitrophenol were completely resolved by a judicious combination of solid phase and eluent.
The smectite-to-illite conversion during shale diagenesis has recently been used to constrain the estimate of a basin's thermal history. We have systematically investigated the kinetics for the conversion of a Na-saturated montmorillonite (SWy-1) to a mixed-layer smectite/illite as a function of KCl concentration (from 0.1 to 3 moles/liter) over a temperature range of 250° to 325°C at 500 bars in cold-seal pressure vessels using gold capsules. The results show that the conversion rate can be described by a simple empirical rate equation
-dS/dt = A · exp(-Ea/RT) · [K+] · S2
where S = fraction of smectite layers in the I/S, t = time in seconds, A = frequency factor = 8.08 × 10-4 sec-1, exp = exponential function, Ea = activation Energy = 28 kcal/mole, R = gas constant, 1.987 cal/deg-mole, T = temperature (degree Kelvin), [K+] = K+ concentration in molarity (M) in the fluid.
The results also show that Ca2+ in solutions barely affects the illitization rate, whereas Mg2+ significantly retards the rate. The retardation, however, is not as severe as previously reported. Na+ ion can significantly retard the rate only if the concentration is high.
We found that by assuming a range 0.0026-0.0052 moles/liter (100-200 ppm) of K+, concentrations similar to the value typically reported in oil field brines, the present kinetic model can reasonably predict the extent of the smectite-to-illite conversion for a number of basins from various depths and age. This narrow range of potassium concentrations, therefore, is used to model the smectite-to-illite conversion in shale when the actual chemical information of pore fluid is not available.
The kinetic equation has been tested using field data from a large variety of geologic settings worldwide (i.e., the Gulf of Mexico, Vienna Basin, Salton Trough Geothermal Area, East Taiwan Basin, Huasna Basin, etc). The results show that the equation reasonably predicts the extent of the reaction within our knowledge of the variables involved, such as burial history, thermal gradients, and potassium concentration.
In environments contaminated with Cr, the interlayers of expandable layer silicates may serve as sinks for this potentially toxic element. As a means of determining the potential for smectites to serve as sinks for Cr, the precipitation products of Al and Cr in the interlayers of a montmorillonite were examined. Five montmorillonite (SWy-1) clay suspensions were treated with preweighed amounts of AlCl3 and CrCl3 to give five Al/(Al + Cr) molar ratios (1.0, 0.67, 0.5, 0.33, 0) with a total trivalent cation (M3+) concentration of 600 cmol(+)/kg clay. The clay-cation suspensions were titrated with 0.1 N NaOH to give a NaOH/M3+ molar ratio of 2.5. Analysis of the solid-phase reaction products showed that the cation exchange capacity and specific surface of all clays were reduced. Chromium reduced the exchangeability of the interlayers while Al increased the thermal stability. X-ray diffraction analysis revealed that all Al-containing interlayer materials formed similar gibbsitelike polymers. Data from infrared spectroscopy indicated that both Al and Cr were present within the same polymer. Differential thermal analysis and thermogravimetric tracings showed that the rapid collapse of the interlayer in the Cr end-member upon heating was due to a low-temperature loss of hydroxyls. It was not possible to identify all interlayer structures in the Cr end-member. Data from X-ray photoelectron spectroscopy showed all Cr to be Cr(III). Displacement of the interlayer material became more difficult as Cr content increased. The least exchangeable interlayers, therefore, may be found in environments containing the most Cr.
The effect of acid type and concentration on the reaction rate and products of dissolution of hectorite in inorganic acids was investigated. The dissolution of hectorite in hydrochloric (HCl), nitric (HNO3) and sulphuric (H2SO4) acids was characterized using quantitative chemical analysis, infrared (IR) and multinuclear MAS NMR spectroscopies. The rate of dissolution increased with acid concentration and decreased in the order HCl ≥ HNO3 = H2SO4 at the same molar concentration. No differences were found in the reaction products of hectorite treated with the three acids. The rate of Li dissolution was slightly greater than that of Mg at lesser acid concentrations (0.25 M), indicating that protons preferentially attack Li octahedra. The gradual changes in the Si-O IR bands reflects the extent of hectorite dissolution. The analysis of 29Si MAS NMR spectra relative peak intensities with dissolution time and acid concentration provided direct dissolution rates for tetrahedral (Q3) Si. After acid dissolution, most Si was bound in a three dimensional framework site (Q4), but a substantial part also occurred in the Si(OSi)3OH (Q31OH) and Si(OSi)2(OH)2 (Q220H) environments. These three sites probably occur in a hydrous amorphous silica phase. Both AlJV and AlVt rapidly disappeared from 27Al MAS NMR spectra of the dissolution products with acid treatment. The changes in IR and MAS NMR spectra of hectorite due to acid dissolution are similar to those of montmorillonite.
The compositions, fabrics and structures of authigenic minerals that formed recently from silicic volcanic ash layers from a 1300-meter sediment column obtained at ODP Site 808 of the Nankai Trough were studied using XRD, STEM, AEM and SEM. Smectite and zeolites were first detected as alteration products of volcanic glass with increasing depth, as follows: smectite at 200 m below seafloor (mbsf) (20 °C), clinoptilolite at 640 mbsf (60 °C) and analcime at 810 mbsf (75 °C).
A primitive clay precursor to smectite was observed as a direct alteration product of glass at 366 mbsf (approximately 30 °C). High defect smectite with lattice fringe spacings of 12 to 17 Å and having a cellular texture filling pore space between altering glass shards occurs at 630 mbsf. Packets of smectite become larger and less disordered with increasing depth and temperature. The smectite that forms as a direct alteration product of volcanic glass has K as the dominant interlayer cation.
With increasing depth, smectite becomes depleted in K as the proportion of clinoptilolite increases, and then becomes depleted in Na as the proportion of analcime increases. The composition of the exchangeable interlayer of smectite appears to be controlled by the formation first of K-rich clinoptilolite and then Na-rich analcime, via the pore fluid, giving rise at depth to Ca-rich smectite. Smectite reacted to form illite in the interbedded shales but not in the bentonites. Paucity of K in smectite and pore fluids, due to formation of clinoptilolite under closed system conditions, is believed to have inhibited the reaction relative to shales.
The composition of clinoptilolite formed from volcanic glass was investigated from cuttings collected from the offshore MITI-Somaoki borehole, 52 km east of Soma City, Japan. Unaltered volcanic glass and clinoptilolite-replaced glass were found coexisting in the same silicic tuff at 1000 m depth, but unaltered volcanic glass and clinoptilolite did not coexist in individual glass shards, and each material analyzed in this study was pure. The SiO2 and Al2O3 contents of the pure clinoptilolite and the pure, unaltered glass were 69.32 and 13.05 wt. %, and 70.03 and 11.54 wt. %, respectively. The SiO2 content was almost the same and the Al2O3 content was greater in the clinoptilolite-replaced glass compared with the unaltered volcanic glass. As a result, the SiO2/Al2O3 ratio in the clinoptilolite-replaced glass (SiO2/ A12O3 = 5.31) was slightly lower than that of the unaltered volcanic glass (SiO2/Al2O3 = 6.07). The extra-framework cation composition of the clinoptilolite-replaced glass was three times richer in K (K2O = 7.84 wt. %) than the unaltered volcanic glass (K2O = 2.59 wt. %). The cation selectivity of clinoptilolite, which shows a preference for K to Ca and Na, played an important role in the concentration of K in clinoptilolite during clinoptilolite formation from volcanic glass, although the initial pore waters and the volcanic glass were not especially relative K.
Clinoptilolite-replaced glass in the calcite-cemented tuff at 1100 m depth was not enriched in Ca, suggesting that the exchangable-cation composition of clinoptilolite did not change by exposure to Ca-rich solutions at this depth. Apparently, the exchangable-cation composition of clinoptilolite, once formed, is relatively stable and difficult to change, even under conditions in which calcite is precipitating on clinoptilolite crystals.
Several samples of large- and small-particle magnetite (Fe3O4), as well as its thermal decomposition products formed at different temperatures and atmospheres, have been studied extensively by Mössbauer spectroscopy (MS), both with and without an applied field of 6T. Synthetic mixtures of magnetite and poorly- or well-crystallized maghemite have also been studied. Large-particle magnetite (MCD > 200 nm), when heated in air for 12 hours at T < 400°C, transforms to a mixture of well-crystallized hematite and magnetite, the latter one remaining stoichiometric, according to the relative area-ratios obtained from MS. Thermal treatment at 1300°C in a controlled O2 partial pressure, produced a mixture of stoichiometric and nonstoichiometric magnetite, but the latter component seems to be composed of particles with different degrees of nonstoichiometry. The Mössbauer spectra of the decomposition products at T < 200°C in air of small-particle magnetite (MCD ~ 80 nm) could be successfully interpreted as a mixture of magnetite and maghemite, rather than nonstoichiometric magnetite. This suggestion is further supported by the experiments with the synthetic mixtures. It is clearly demonstrated that is not possible, even by applying a strong external field, to separate the contribution of the A-site of magnetite from that of maghemite.
Recent pedological evidence of the widespread distribution of beidellites in soils indicates the need for a greater knowledge of the effect of charge location on the microstructural organization of Na+ smectite in gels. After equilibration at a suction pressure of 3.2 kPa before and after desiccation, TEM observations showed large differences between a beidellite and both a low and high charge montmorillonite. Monolayers were rare; individual layers were instead organized in particles with larger interparticle distances. This has implication for theories relating swelling pressures to interlayer distances or surface areas and implies the need for a geometrical approach to the study of swelling in smectites. Location of isomorphous substitution in the tetrahedral sheet of smectites results in an increased lateral extension of overlapping layers. This was reflected in a greater capacity to rehydrate after desiccation. Increased number of layers in particles were found with increasing surface charge density. The geometric organization of the particles is critical to the understanding of the ability of Na+ smectite to hold water against an applied suction.