To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Source Clays Program of The Clay Minerals Society was initiated in 1972 to distribute a set of reference clays, so that distributed clays could be identical for all recipients. Because most clays do not consist of a single phase, the immediate objective was not to produce a pure product consisting of one clay mineral, but to provide a uniform product. These materials were collected and processed carefully, and sufficient amounts were collected so that material was available for researchers for many years, Large numbers of researchers were thereby assured of working on identical material. Initial descriptions of these materials were presented in the Data Handbook (van Olphen and Fripiat, 1979). An updated version of this book was suggested several years ago because of the availability of new analytical techniques and to provide descriptions of material added to the reference set since 1979.
The upper 15−20 m of a 200 m thick lateritic weathering profile on Precambrian itabirites of Capanema, Brazil, reveals a genetic pathway for the formation of hematitic and goethitic nodules in the ferruginous crust through a very fine grain Al-hematite and Al-goethite mixture, called here the brick-red-material (brm). This evolution develops between the soft saprolite and a 10 m thick indurated ferruginous crust. The soft saprolite retains the original structures of the itabirite and is characterized by almost complete dissolution of quartz, the development of goethite septa, and the partial dissolution of primary hematite. Near the contact with the overlying ferruginous crust, the brm is gradually filling voids as well as replacing primary hematite and goethite in the saprolite. In the upper indurated crust, the brm transforms into coarse structureless ferruginous nodules (aluminous hematites and goethites) and is the precursor of the hematito-goethitic nodules of the crusts. Crystallization of newly-formed Al-goethite and Al-hematite within the brm occurs without detectable amounts of amorphous iron oxides of ferrihydrite precursors.
A new chemical mass balance technique has been developed for simultaneous mineralogical quantification and chemical characterization of soil clays. The procedure includes separation of the whole clay (<2 μm fraction) into six particle size fractions (<0.02, <0.06, <0.2, 0.02–0.06, 0.06–0.2, and 0.2–2 μm fractions), chemical analysis of the whole clay and each of the six fractions, and fitting of a nonlinear chemical mass balance model to the chemical analyses. As written, the chemical mass balance model is valid only for samples containing mixtures of quartz, kaolinite, illite, and mixed-layered smectiteillite. Samples containing carbonates and free iron compounds may be analyzed using the technique if these phases are chemically removed prior to particle size fractionation. Accuracy of the new technique was tested using synthetic data and found to depend on the quality of the input data; however, clay phase quantification within three percentage points of known values was readily achieved. Precision of the technique was evaluated by independently preparing and analyzing five samples of the same soil clay. Standard deviations for clay phase percentages (w:w) in the <2 μm fraction were all less than one percent. The new technique yields accurate determinations of chemistry for the smectitic and illitic phases in mixed-layered smectiteillite, and qualitative estimates for the chemistry of 10 Å-illite. The elemental compositions of quartz and kaolinite are assumed a priori and treated as constants within the non-linear chemical mass balance model.
The hot spring water discharging from a flank of an active volcano is precipitating unique monomineralic manganese deposits over volcanic terrain. The major and trace element chemistry, XRD mineralogy, DTA, and SEM observations indicate that the deposits consist of 10 Å phyllomanganate (buserite) accommodating inter-layer Ca and Mg with negligible amounts of detrital minerals. Other metallic elements can be accommodated by buserite, but concentrations are negligible ranging less than 10 ppm to 500 ppm. Abundance and pattern of REE (less than 100 ppm in total) are similar to those from hydrothermal manganese deposits. The buserite is enriched in Ca and Mg but depleted in Na in comparison with those in the spring water. The distribution coefficients for Ca, Mg and Na between the buserite and the host water were calculated assuming an ion-exchange equilibrium in the Yuno-Taki Fails, which proved applicable to other manganese deposits from surficial environments on land and oceans.
The “Formation Rouge” from the Jbel Rhassoul in Morocco is composed of detrital sediments which have a lacustrine origin. The clays contained in the less than 2 µm fraction of the sediments are detrital phengites and illites, illite/smectites or smectites, and palygorskite. Due to the presence of well preserved long fibers, the palygorskite could not have been transported. They are authigenic and must have formed directly by precipitation from solutions rich in Mg and Al. The detrital illites are impoverished in K and tetrahedral Al. The illite/smectites or smectites, on the contrary, are K-rich but have a low tetrahedral charge. They are also richer in Mg and Fe and have a different crystal size, composition, and crystallinity from the illites. They most probably formed by crystallization, similar to the palygorskites, directly from the solution. The Al could have been provided by the detrital illite, which may have been unstable in an alkaline environment and released K and Al to the solutions.
Selective-dissolution techniques by ammonium oxalate (OX), dithionite-citrate-bicarbonate (DCB), and dithionite-ethylenediaminetetraacetic acid (D-EDTA), and X-ray diffraction and Mössbauer spectroscopy were used to identify and characterize iron oxides and oxyhydroxides in the <2-mm, <50-μm, and <2-μm size fractions of a Mollisol from Bahia Bianca, Argentina. Iron compounds are present at low concentrations in mixtures with quartz, Na-rich feldspar, illite, interstratified illite-montmorillonite, and traces of kaolinite. Total Fe and Al content increases as soil particle size decreases, from 4.3 and 13.3 wt. % in the <2-mm size fraction to 8.5 and 22.8 wt. % in the clay fraction (<2 μm), respectively. No more than 25–30% of the total Fe is associated with the crystalline and the amorphous Fe oxides. Weakly ferromagnetic hematite and goethite were identified in the different fractions. These phases have small particle sizes and/or low crystallinity. They may also have Al for Fe substitutions. Crystalline magnetite or maghemite is rare. These Fe-rich phases are probably coating coarser particles.
The efficiency of Fe removal is highest for the D-EDTA treatment and least efficient for the OX method, for all fractions. The opposite is true for Al removal. Poorly crystalline hematite and goethite, which are soluble in oxalate, are only present in the coarser fractions. Poorly crystalline and crystalline hematite and goethite, which are soluble in DCB and EDTA, are present in coarser fractions, but do not occur in the clay fraction. DCB treatment probably dissolves Al in the 2:1 type phyllosilicates occurring in this soil, whereas D-EDTA dissolves Fe in the hydroxy interlayers of the smectite minerals or in the silicate phases.
Conversion of tertiary butylacetate to isobutylene and acetic acid and cracking of n-octane were used as model reactions to monitor the catalytic activity of a condensate and aqueous extract derived from a sample of montmorillonite. The condensate was obtained by condensing the vapor phase evolved on heating the clay and the extract was derived from the clay by prolonged water extraction. Both condensate and extract were colloidal systems, which were separated into solid and liquid fractions by distillation. Reactions carried out in a dynamic system established that the solid components acted as true acid catalysts, whereas the liquid fractions were inactive under the experimental conditions adopted. The catalytic activity per weight of the condensate exceeded that of either the parent clay or the extract.
The present results confirm that colloidal size catalysts of high activity can be generated from clays. Such materials, mobilized and transported alone or with formation fluids, may act as catalysts in places removed in space and time from their source. This finding refutes objections previously raised to the operation of bulk clays as catalysts for reactions with particulate organics and supports the concept that acid catalysts derived from clays may participate in organic geochemical reactions in an aqueous medium.
Monte Carlo (MC) simulations of molecular structure in the interlayers of 2:1 Na-saturated clay minerals were performed to address several important simulation methodological issues. Investigation was focused on monolayer hydrates of the clay minerals because these systems provide a severe test of the quality and sensitivity of MC interlayer simulations. Comparisons were made between two leading models of the water-water interaction in condensed phases, and the sensitivity of the simulations to the size or shape of the periodically-repeated simulation cell was determined. The results indicated that model potential functions permitting significant deviations from the molecular environment in bulk liquid water are superior to those calibrated to mimic the bulk water structure closely. Increasing the simulation cell size or altering its shape from a rectangular 21.12 Å × 18.28 Å × 6.54 Å cell (about eight clay mineral unit cells) had no significant effect on the calculated interlayer properties.
In order to understand the influence of salt concentration and temperature on the behavior and properties of clays used in drilling muds, we studied montmorillonite supensions (4 g clay/100 g solution) in 0.1, 0.5 and 1 M NaCl and KCl solutions. A fraction of each sample was heated to 200 °C in a closed vessel for 7 d, then cooled at room temperature (RT, 25 °C). Small-angle X-ray scattering (SAXS) spectra were recorded, for all the samples, at RT. The structure of the clay particles was determined by comparing the experimental intensity with the theoretical intensity computed from a model that took into account the number of layers per particle, the hydration state of the layers (0, l, 2, 3 or 4 water layers) and the order in the succession of these states. With this set of parameters, we can compute the mean statistical parameters M¯ (mean number of layers per particle), d¯ (mean interlayer distance) and δ¯2/d¯2 (parameter describing the disorder of the distribution of interlayer distances). The evolution of these parameters shows that:
1) At low concentration (0.1 M NaCl or KCl), the samples do not consist of particles but of isolated layers (M = 1). The suspensions form gel-like structures. The difference between Na and K suspensions, or between heated and nonheated samples, is unnoticeable at the studied scale (5–500 Å).
2) An increase in salt concentration (from 0.1 to 0.5 M) brings the sample in a granular state: we notice the appearance of particles at 0.5 M (M¯ ≥ 25). Differences appear between NaCl and KCl suspensions, and the temperature effect becomes visible. Thus, we noticed that in NaCl suspensions, particles are composed of hydrated layers (1, 2, 3 or 4 water layers) and internal porosity (d > 30 Å), whereas suspensions in KCl are characterized by the presence of interlayer distances of 10 Å, that is, of collapsed layers. Particles in the KCl suspensions are much thicker than in the NaCl corresponding ones, and also less hydrated at the interlayer level as well as at the internal porosity level. Further increase in salt concentration (0.5 to 1 M) amplifies this effect. As far as temperature is concerned, its effect is to promote the clay dispersion by breaking up the particles, dehydrating and disordering them. This effect is more important for low salt concentration, that is, when the system is less stressed.
The dielectric behavior of kaolinite, montmorillonite, allophane, and imogolite samples adjusted to a water potential of 33 kPa was examined using a time-domain reflectometry method over a wide frequency range of 103-1010 Hz. A dielectric relaxation peak owing to bound H2O was observed. The observation of this peak required the precise determination of the contributions of dc conductivity. The peak is located at 10 MHz, indicating that the relaxation time of the bound H2O is approximately ten times longer than the relaxation time of bound H2O with organic polymers, such as an aqueous globular-protein solution. The structure of bound H2O differs between phyllosilicates and amorphous phases, based on differences in relaxation strength and the pattern of distribution of the relaxation times. The dielectric process involving rotation of bulk H2O molecules was also observed at 20 GHz. The relaxation strength of bulk H2O increased with an increase in the water content. The interfacial polarization in the diffuse double layer occurred only in montmorillonite and kaolinite, indicating that mechanisms involving the Maxwell-Wagner and surface-polarization effects cannot be extended to include allophane and imogolite. Although these results suggest that additional work is required, a tentative conclusion is that a tangential migration of counter-ions along clay surfaces may be important.
This work investigates unit cell dimensions, crystal size and specific surface area of aluminous goethite that was progressively dehydroxylated to form hematite. Goethite synthesized from the ferrous system altered to hematite with DTGA maximum increasing from 236° to 273°C for 0 to 30.1 mole % Al-substitution. Unit cell dimensions of goethite and hematite decreased as Al-substitution increased and increased as excess OH increased. The crystallographically equivalent a axis of goethite and c axis of hematite were more sensitive than other axes to the presence of excess structural OH associated with Al-substitution. Specific surface area increased from 147 to 288 m2/g for goethite and from 171 to 230 m2/g for hematite as Al-substitution increased. An increase in specific surface area on heating goethite at temperatures between 200° and 240°C is related to a decrease in the size of coherently diffracting domains of goethite crystals and to the development of pore and structural defects associated with the formation of hematite. The decrease in specific surface area for heating temperatures above 240°C is attributed to the growth of hematite crystals by diffusion.
The Raman spectra of a tubular halloysite originating from Matauri Bay, New Zealand, have been obtained using a Renishaw 1000 Raman microscope system. The Raman microprobe enables the Raman spectra of crystals as small as 0.8 μm diameter to be obtained over the complete wavelength range and allows spectral variations along the different crystal axes to be studied. Three bands in the hydroxyl stretching region were observed at 3616.5, 3623.4 and 3629.7 cm-1 and are attributed to the inner hydroxyls of the shared lower plane of the octahedral sheet of the halloysite. Two bands at 3698.2 and 3705 cm−1 were obtained for the outer hydroxyls of the unshared outer octahedral plane. The relative intensity of the 3629.7 cm−1 band varied according to the tube orientation. Lattice vibrations of the halloysite were also found to be orientation-dependent.
The structure of montmorillonite intercalated with [Al13O4(OH)24+x(H2O)12−x](7−x)+ cations ( for short), where x = 0, 2 and 4, has been studied using the Cerius2 modeling environment. The Crystal Packer module used in the present study takes into account only the nonbonded interactions between the silicate layer and the Keggin cations. Minimization of the total sublimation energy led to the following conclusions: the structure of the interlayer (that is, the orientation of Keggin cations and the basal spacing) depends on the charge of cations (that is, on the degree of hydrolysis, x). The values of basal spacings in the range 19.38–20.27 Å have been obtained, depending on the charge and arrangement of cations in the interlayer. The dominating contribution to the total sublimation energy comes from the electrostatic interactions. Translations of cations along the 2:1 layers give only small fluctuations of the total sublimation energy and basal spacings. No preference for the position of cations in the interlayer of montmorillonite was found during translation along the 2:1 layers. This result confirmed the inhomogeneous distribution of cations in the interlayer and turbostratic stacking of layers.
Shewanella putrefaciens is a species of metal-reducing bacteria with a versatile respiratory metabolism. This study reports that S. putrefaciens strain MR-1 rapidly reduces Fe(III) within smectite clay minerals. Up to 15% of the structural Fe within ferruginous smectite (sample SWa-1, Source Clays Repository of the Clay Minerals Society) was reduced by MR-1 in 4 h, and a range of 25% to 41% of structural Fe was reduced after 6 to 12 d during culture. Conditions for which smectite reduction was optimal, that is, pH 5 to 6, at 25 to 37 °C, are consistent with an enzymatic process and not with simple chemical reduction. Smectite reduction required viable cells, and was coupled to energy generation and carbon metabolism for MR-1 cultures with smectite added as the sole electron acceptor. Iron(III) reduction catalyzed by MR-1 was inhibited under aerobic conditions, and under anaerobic conditions it was inhibited by the addition of nitrate as an alternate electron acceptor or by the metabolic inhibitors tetrachlorosali-cylanilide (TCS) or quinacrine hydrochloride. Genetic mutants of MR-1 deficient in anaerobic respiration reduced significantly less structural Fe than wild-type cells. In a minimal medium with formate or lactate as the electron donor, more than three times the amount of smectite was reduced over no-carbon controls. These data point to at least one mechanism that may be responsible for the microbial reduction of clay minerals within soils, namely, anaerobic respiration, and indicate that pure cultures of MR-1 provide an effective model system for soil scientists and mineralogists interested in clay reduction. Given the ubiquitous distribution and versatile metabolism of MR-1, these studies may have further implications for bioremediation and water quality in soils and sediments.
A new approach is described to computer simulate cation distribution in octahedral sheets of dioctahedral 2:1 layer silicates with vacant trans-octahedra. This approach makes use of the information on cation distribution at the one-dimensional level provided by integrated IR optical densities for the region of OH-stretching frequencies. By using this program it is possible to show that (1) the Mössbauer spectrum of glauconite B. Patom conforms to the structural model composed of celandonite-like and illite-like domains whose dimensions are limited by approximately 2 or 4 unit cells; (2) non-equivalency of “left” and “right” cis-positions (with fixed b-direction) with respect to R2+ and R3+ occupancy is a characteristic feature of a celadonite-like domain.