To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mixed layering of illite-smectite was studied both experimentally, by using high-resolution transmission electron microscopy (HRTEM) and analytical electron microscopy (AEM), and theoretically, by using lattice-energy calculations.
Samples from a hydrothermal origin show the transformation of smectite to illite with different ordering types in the illite-smectite layer sequences. Ordering ranges from complete disordered (Reichweite, R = 0 type) in the less transformed samples to increased local order, with IS and IIS sequences (R = 1 and R = 2, respectively; I = illite, S = smectite) in more illitized samples.
Lattice-energy calculations are used to determine the structure of the illite-smectite sequence, which corresponds to the minimum energy. The unit layers are: O0.5TI′TO0.5 (O, T, and I′, respectively, denote the octahedral and tetrahedral sheets, and the interlayer. The 0.5 signifies half of the octahedral cations.) For example, the arrangements of the perfectly ordered … ISIS … and … IISIIS … sequences are respectively … OM(TI′T)IOM(TI′T)S … and … OM(TI′T)IOI(TI′T)1OM(TI′T)S … (the subscripts I, S, and M, respectively, refer to compositions of illite, smectite, and midway between at 0.5). Such arrangements produce a polar model for TOT layers, which display a TIOMTS structure in the case of IS adjacent layers. Furthermore, the lattice energies of … ISIS … and … IISIIS … are found to be nearly equal to the corresponding sums of the lattice energies of illite and smectite. This result indicates that interstratified illite-smectite and the two-phase assemblage of illite + smectite have similar stabilities.
On the basis of the above model, the solid-state transformation of one smectite layer to one illite layer, which produces mixed-layer sequences, involves the transformation of an O0.5TI′TO0.5 unit of smectite into the same corresponding unit of illite.
The purpose of this study was to investigate bonding mechanisms of representative inorganic anions and citrate with imogolite and allophane using electrophoresis. The electrophoretic mobility (EM) of synthetic imogolite and allophanes with Al/Si molar ratios of 2.02, 1.64, and 1.26 was determined in 0.001 and 0.01 M sodium solutions. The highest point of zero mobility (PZM) values for imogolite and the highest point of zero charge (PZC) values for allophane occurred in the presence of ClO4, NO3, Br, I, and Cl. Below the PZM and PZC, Cl and I lowered the EM relative to the other anions but did not shift the PZM and PZC significantly. This indicates that Cl and I formed more outer-sphere complexes than the other ions. The EM of imogolite and allophane was negative at pH < 6 in 0.001 and 0.01 M NaF probably due to a phase change. We observed the formation of cryolite (Na3AlF6) with transmission electron microscopy (TEM) and X-ray diffraction (XRD) in the NaF systems at low pH. Conversely, phosphate at 0.001 and 0.01 M concentrations lowered both the PZM and the EM in imogolite and both the PZC and the EM in allophane compared with ClO4. Phosphate-treated allophane had the same PZC as a synthetic amorphous aluminum phosphate. The PZM values of imogolite and allophane with 2:1 Al/Si in 0.0001 M Na-citrate were 10.9 and 5.9, respectively. At pH 7.3, Na-citrate lowered allophane EM more than it lowered imogolite EM relative to ClO4.
The EM in NaClO4 and Na2SO4 was reversible by forward- and back-titration with NaOH and HClO4, indicated that ClO4 and SO4 were not specifically adsorbed. Chloride likely formed more outer-sphere complexes than ClO4. Imogolite EM and allophane EM in dilute NaF and NaH2PO4 solutions were not reversible, indicating either surface inner-sphere complexes or surface precipitates of aluminum fluoride and amorphous aluminum phosphate-like materials on these minerals. Sulfate gave a lower EM than the monovalent anions, implying a greater tendency to form outer-sphere complexes. Citrate appeared to form inner-sphere complexes on both imogolite and allophane, but formation was concentration-dependent. The tendency of anions to form surface complexes with imogolite and allophane is consistent with the tendency of anions to form soluble aluminum complexes.
Kaolinite: alkali halide intercalates have been successfully prepared by grinding the salt with kaolinite in the absence of water. Rate of intercalation is shown to correlate negatively with melting point of the salt. The basal dimensions of the intercalates increase with increasing size of the ion. As shown recently for kaolinite: NaCl intercalate, the layered structure survives the dehydroxylation of the kaolinite at 500°–600°C, at which point the excess alkali halide can be removed by rinsing to give an XRD-amorphous material. This amorphous material, of approximate stoichiometry MAlSiO4, reacts at surprisingly low temperatures to give crystalline phases, apparently of the same stoichiometry, with structures closely related to eucryptite (M = Li), carnegieite (M = Na), kalsilite (M = K), and leucite (M = K, Rb, Cs). The relationships between the structures of the reaction products are discussed.
The clay mineralogy and major element geochemistry of four distinct layers within the Cretaceous/Tertiary (K/T) boundary marl (i.e., II, IIIa, IIIb, and IV) at Stevns Klint, Denmark, including “impact layer” (layer IIIa), were examined, and there was not a marked change in the clay mineralogy throughout this K/T boundary marl. A magnesium smectite (i.e., Mg-smectite) was the predominant clay mineral at the K/T boundary not only at Stevns Klint and at Nye Kløv; it was also found to be the predominant clay mineral in the K/T boundary at Karlstrup Quarry. In addition, Mg-smectite was found in a smectitic marl 32 meters below the K/T boundary at the Limhamn Quarry (near Malmö, Sweden), and it did not have anomalous concentrations of iridium or other siderophile trace elements. Given its occurrence in a Maastrichtian marl, it is therefore argued that the Mg-smectite is not derived from meteorite impact.
The rare earth element (REE) signatures of the Mg-smectites ranged from being comparable to the North American Shale Standard (NASC) to being one-half an order of magnitude depleted relative to NASC. One Mg-smectite collected from layer IIIb, immediately above the “impact/red layer,” was depleted in REE by one order of magnitude relative to NASC, and these levels of REE are comparable to those of smectite and illite/smectite (I/S) formed authigenically in bentonites and K-bentonites, respectively. Thus, the REE data suggest this Mg-smectite in all likelihood was formed authigenically from a glassy precursor. The presence of the low levels of REE of the Mg-smectite in the layer IIIb has no particular significance other than to suggest that this Mg-smectite separate was the least contaminated with illite or apatite having higher REE levels. With better separation, the other Mg-smectites would be expected to have comparably low levels of REE. Given the presence of the Mg-smectite throughout the K/T boundary and in Maastrichtian and Danian marls, the Mg-smectite is thought to be of volcanic origin. However, is not certain whether the Mg-smectite formed from volcanic glass deposited at the K/T boundary or whether it was formed from volcanic glass as young as late Cretaceous.
Methylene blue (MB) was adsorbed from aqueous solutions onto a kaolinite and four soil samples to determine the effects of MB dimerization on the measured surface area. Adsorption isotherms were prepared using four adsorbing solutions containing, respectively, 9, 46, 71, and 83% of MB molecules in the dimeric state. Langmuir-type isotherms were obtained in each case. The results indicate that equilibration occurs quickly. The aggregation state of MB molecules at the surface does not depend on the aggregation state in the initial adsorbing solutions, but on the final equilibrium concentration of MB. A comparison with the specific surface area measured by adsorption of ethylene glycol monoethyl ether indicates that MB adsorbs as a monomer, regardless of the aggregation number in solution. This result occurs owing to the strength of monomer-surface and monomer-monomer interactions. If monomer-surface interactions are favored, the MB dimer adsorbs in the monomeric form. If monomer-monomer interactions are favored, dimer adsorption may occur. The visible spectra of adsorbed molecules indicated that MB was present at the surface as a mixture of monomeric and dimeric species. These results suggest that dimers are formed in the contact region between two aggregating particles.
The substitution of Fe3+ in the kaolinite structure is studied by EPR spectrometry and by FTIR spectrometry on a large set of kaolins from different origins (sedimentary and primary ores, soil kaolins). The IR bands at 3598 and 875 cm−1, observed in the literature only in the case of disordered kaolins or in Fe-rich environments (synthetic, lateritic), are revealed by high-resolution IR analysis, whatever the origin and the total Fe content of the samples. The EPR bands corresponding to Fe3+ substituted in sites II of the octahedral sheet increase when the IR absorbance near 3600 cm−1 increases. Two IR absorption bands near 4465 cm−1 and 7025 cm−1 are observed for the first time, both in transmission and diffuse reflectance on all samples. These bands are assigned to the combination of the 3598 and 875 cm−1 bands and to the first harmonic of the band at 3598 cm−1, respectively. The area of the band at 4465 cm−1 in diffuse reflectance is quantitatively correlated to the abundance of Fe3+ located in centers II as measured by ESR. This directly confirms the assignment of the two IR bands at 3598 and 875 cm−1 to OH stretching and deformation vibration bands in octahedral FE3+ environment in the kaolinite structure, respectively. Effects due to the size of particles and to the main kaolins impurities on the near infrared spectra, are also discussed.
The porosities of flocs formed from a used drilling mud were determined by measuring sizes and settling speeds of individual flocs. These flocs were produced in a Couette-type flocculator under a variety of combinations of fluid shear and solid concentrations. In the calculation of floc porosities, a floc settling model was employed that can consider the effects of creeping flow through a floc on its settling speed. Results show that floc structure can be well described as a fractal with a fractal dimension of 1.53–1.64 for the floc size range tested. The effects of flocculation conditions, such as fluid shear and solid concentration, on floc porosity and structure were examined. It was found that floc porosity and fractal dimension were not influenced by solid concentration, but they increased as fluid shear decreased. Empirical expressions for the porosity of drilling mud flocs are obtained from both the floc settling model and Stokes’ law. For solid volume fraction in flocs, the relative difference between these two expressions could be as much as 38%. However, the fractal dimensions estimated based on the two settling models are nearly the same.
Intercalation of naphthalene and anthracene into alkyltrimethylammonium (CnH2n+1(CH3)3N+; n = 8, 12, 14, 16, and 18)-montmorillonites was carried out by novel solid-solid reactions at room temperature. Octyltrimethylammonium(C8)-montmorillonite did not form an intercalation compound with either naphthalene or anthracene. Naphthalene was intercalated into both dodecyltrimethylammonium(C12)- and octadecyltrimethylammonium(C18)-montmorillonites to give intercalation compounds. On the other hand, the solid-solid reaction between dodecyltrimethylammonium(C12)- or tetradecyltrimethylammonium(C14)-montmorillonite and anthracene gave only partly intercalated compounds while hexadecyltrimethylammonium(C16)- and octadecyltrimethylammonium(C18)-montmorillonites gave single phase intercalation compounds. The hydrophobic interactions between alkylammonium-montmorillonites and the aromatic compounds are thought to be the driving force for the solid-state intercalation. The extent of the increase in the basal spacing may also be involved in the different reactivity.
Batch reactor experiments were performed at 150°C, 175°C, and 200°C to determine the effect of high pH NaOH solutions on the mineralogy of the Opalinus shale. In these experiments, the change in solution quench pH at 25°C, solution composition, and mineralogy were monitored as a function of time for up to ≈40 days. Runs were performed in 50 ml titanium hydrothermal reactor vessels. Each reactor was charged with 0.5–5.0 g of the 80–200 mesh size fraction of Opalinus shale, and 25 ml of solution (0.1 and 0.01 M NaOH). The general sequence of reaction products observed under these high pH conditions include first the formation of analcime, followed by vermiculite, and finally Na-rectorite formation.
A new method for the prediction of Gibbs free energies of formation for hydrated clay minerals is proposed based on the parameter ΔGO= Mz+(clay) characterizing the oxygen affinity of the cation Mz+. The Gibbs free energy of formation from constituent oxides is considered as the sum of the products of the molar fraction of an oxygen atom bound to any two cations multiplied by the electronegativity difference defined by the ΔGO= Mz+(clay) between any two consecutive cations. The ΔGO= Mz+(clay) value, using a weighting scheme involving the electronegativity of a cation in a specific site (interlayer, octahedral, or tetrahedral) is assumed to be constant and can be calculated by minimization of the difference between experimental Gibbs free energies (determined from solubility measurements) and calculated Gibbs free energies of formation from constituent oxides. Results indicate that this prediction method compared to other determinations, gives values within 0.5% of the experimentally estimated values. The relationships between ΔGO= Mz+(clay) corresponding to the electronegativity of a cation in either interlayer or octahedral sites and known ΔGO= Mz+(aq) were determined, thereby allowing the prediction of the electronegativity of transition metal ions and trivalent ions in hydrated interlayer sites and octahedral sites. Prediction of Gibbs free energies of formation of any clay mineral with various ions located in the interlayer and with different cations in octahedral sites is possible. Examples are given for Al-rich montmorillonite from Aberdeen, transition element-exchanged montmorillonite, and Ni-rich stevensite, and the results appear excellent when compared to experimental values.
The vibrational modes of clay minerals are uniquely accessible to FT Raman spectroscopy, but this potentially powerful technique has found limited application to the study of clay mineral structure. Raman spectra in the 50 to 3800 cm−1 region were obtained for a number of kandite clays. The kandite clay minerals are characterised by relatively intense bands centred at 142.7 cm−1 for kaolinite, 143 cm−1 for halloysite and 131.2 cm−1 for dickite with prominent shoulders at 129, 127, and 120 cm−1 respectively. These vibrational modes are attributed to the O-Al-O and O-Si-O symmetric bends. Differences in the lattice modes for the kandite clay minerals in the 200 to 1200 cm−1 were obtained. Four OH bands were obtained for kaolinite 3621, 3652, 3668, and 3695 cm−1; three OH bands were found for a selection of dickites and halloysites. The San Juan Dickite and the Eureka Halloysite show further resolution of the low frequency 3620 cm−1 hydroxyl band. This splitting is attributed to variation in the position of the inner hydroxyls. Variation in band intensity and position was found to be sample dependent.
The formation of kaolin-group minerals in the weathering profile of granite, under the humid, temperate climate as found in Korea, was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron microprobe analysis (EMA). The granite was gradually weathered to saprolite. K-rich feldspar was not weathered in the profile, but plagioclase partially weathered to halloysite septa (i.e., wall-like masses). At the bottom of the profile, biotite had weathered to regularly interstratified biotite-vermiculite (B-V), and subsequently to kaolinite, with a considerable increase in grain volume. In the upper part of the profile, loose aggregates of transported clays, including halloysite and kaolinite, coated the preformed halloysite septa in the weathered plagioclase. Halloysite had precipitated as a metastable phase in the microfissures of partially weathered plagioclase. Kaolinite had precipitated heavily in the weathered biotite, where surfaces supply abundant templates facilitating the nucleation of kaolinite. The localized crystallization of halloysite and kaolinite, depending on the distribution of primary minerals, strongly influenced the kaolin mineralogy of the granite weathering profile.
With the 50th volume of History in Africa, the journal is not quite fifty years old. As we prepare for the 50th anniversary of the journal next year, it is a perfect time to examine the present and imagine the future of our field. Conceived as a journal concerned with historical method, scholarly debate, and sources, History in Africa has both generated and reflected significant epistemological change. But we also recognize that African history and African Studies, more generally, are engaged in longstanding and ongoing struggles to move beyond colonial ways of knowing.1 How can History in Africa actively reorient and reimagine its role in this crucial intellectual work?
Hydroxy-interlayered vermiculite (HIV) is a ubiquitous phyllosilicate in the <0.05-mm fraction of sandy soils on the U.S. southeastern coastal plain. Extensive areas of soils with abundant HIV (i.e., peninsular Florida) have no detectable mica; yet the coarseness, platy habit, and nonexchangeable K associated with HIV grains suggest a mica precursor. The objectives of this study were: (1) to probe for mica zones (1.0-nm) within HIV grains, using high-resolution transmission electron microscopy (HRTEM), and (2) to determine intragrain elemental distributions via electron microprobe analysis (EMA). HIV grains from a Quartzipsamment medium-silt fraction, which contained no detectable mica by X-ray diffraction (XRD), were concentrated via high-density liquid separation. EMA transects and X-ray dot maps showed zonation or trends of K depletion near edges of some grains, with K2O contents ranging from trace levels to >40 g kg-1. Elemental oxide data indicated a dioctahedral phyllosilicate structure, with some octahedral substitution of Fe and Mg for Al. Intermittent 1.0-nm lattice-fringe images obtained by HRTEM supported the presence of mica zones within grains. There were no detectable 1.4-nm fringes, despite the dominance of a 1.4-nm XRD peak, indicating the instability of the HIV specimen under the electron beam. Results support a transformational link between mica and HIV in these soils. Rapid incursion and polymerization of Al following loss of K from mica may limit the extent of the vermiculite intermediate. The latter idea is consistent with the paucity of vermiculite in Florida soils. Traces of occluded mica may be the last remnants of the precursor grain. A sand-sized mica precursor would likely have weathered in place during the period when colloidal components such as kaolinite illuviated to deeper zones. Thus, the transformation product (HIV) would comprise a significant proportion of the <0.05-mm fraction persisting in sandy eluvial horizons.
Testing shows that many of the present commercially available bentonite products used for clay liner/soil sealant applications may be susceptible to chemical degradation by certain contaminants. Testing also confirms that a recently developed contaminant resistant clay (CRC) is resistant to various contaminants that would otherwise attack and degrade the present commercially available products. The tests that were used to determine its effectiveness were American Petroleum Institute (API) fluid loss, rigid wall hydraulic conductivity, flexible wall hydraulic conductivity and a newly developed top loading filter press (TLFP) test (LSK method).
Ba-bearing clinoptilolite (with >2 wt. % BaO) occurs in Neogene marine siliceous sediments from ODP Leg 127 Site 795 in the Japan Sea. Ba-bearing clinoptilolite is formed by reaction of volcanic glass and Ba-rich pore water during burial diagenesis.
Young marine green grains, from Fe-rich sediments, were studied by using HRTEM systematically combined with punctual microchemical EDX analyses. Experimental results demonstrated these grains were made of a mixture of very small phases (mainly 1:1 and 2:1 silicates layer phases) with a dominant 7-Å Fe specie. All the main crystallochemically characterized phases appeared intimately related in the same evolutionary process. Each of them experienced different and well described conversion mechanisms. So first, a starting original Fe-rich kaolinite recrystallized via solution into another particular 7-Å Fe-rich phase, the composition of which varies from a di-tri to a pure trioctahedral (Mg + Fe) end member.
This Fe-rich 1:1 mineral is effectively not a classical one. Then crystallization of a 10Å, rather dioctahedral K-rich phase occurs at the expense of it, through 1:½:1 interstratified structures. Such an evolution takes place through a solid state mechanism in which one 10-Å layer replaces one 7-Å layer. Another part of mica-like structures may also directly develop after dissolution of original kaolinites. The development of 10-Å K-rich phases could be significative of the beginning of the glauconitization process in these grains.