To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Interpreters unanimously read ἐνευλογηθήσονται in Gen 12:3b LXX as a passive. Good evidence, however, exists to challenge and problematize this conclusion. Recent linguistic studies on the ancient Greek middle voice reveal that aorist and future -θη- forms express a semantically middle domain. When we reexamine the word ἐνευλογέομαι within this light, a better option emerges for seeing its -θη- forms as manifestations of speech actions within this middle domain. In their own unique ways, the LXX as well as Philo, Paul, and Acts further corroborate this alternative. As a result, we may read ἐνευλογηθήσονται in Gen 12:3b LXX as a speech action middle: “to pronounce blessings.” The proposed reading promotes a better understanding of Abraham within Genesis LXX. Rather than a means to an end, Abraham remains at the center of God’s blessing as the earth’s families cry out: “God make me like Abraham!”
Study of the transformation of smectite to illite, chlorite or vermiculite via interstratified clay minerals needs precise qualitative and quantitative determinations of the different layers in the mixed-layer clays and is generally based on X-ray diffraction (XRD) patterns after specific treatments of the clay samples. Saturation with K or Mg followed by ethylene glycol (EG) solvation are classical methods used to identify high-charge smectite and vermiculite. These procedures have been applied to two experimental clays, one composed of smectite layers and the second, a mixture of vermiculite and smectite layers. Different methods of glycolation (EG vapor or liquid EG) produce significant differences in the XRD patterns. Comparison with literature data indicates that K-saturated, high-charge smectite (≈0.8 < total charge <1/unit-cell) and Mg-vermiculite (whatever its charge) do not expand in ethylene glycol vapor (d values ≈14–15 Å). Expansion to 17 Å in liquid ethylene glycol occurs for Mg-vermiculite with a total charge of <~1.2/unit-cell and for K-saturated, high-charge smectite, when the tetrahedral charge is <≈0.7/unit-cell. This study shows that: (1) glycolation procedures need to be standardized; (2) the use of saturation protocols using both liquid ethylene glycol and ethylene glycol vapor yields useful additional information about the distribution of charges in clay minerals.
Study of the behavior of landfill lining materials (clays) in organic solvents is important because, in waste management, lining prevents groundwater contamination by the adsorption of various pollutants such as chemicals and organic solvents. Although scaling behavior and the self-association property of clays in water-alcohol binary solvents have been studied by many researchers, the anomalous behavior of Laponite XLG in binary solvents requires investigation as suggested by previous studies. In the present study, Laponite® RD, which is structurally similar to Laponite XLG, was used to gain further insight into the reasons for the anomalous viscosity, aggregation, and non-ergodic behavior of clay in a water–methanol binary solvent. Dynamic light scattering (DLS) revealed the emergence of the non-ergodic phase of 3% w/v Laponite® RD in the water–methanol binary solvent, which increased in the presence of a large methanol content as well as with aging time in the binary solvent. Viscosity measurements further indicated that aggregation was responsible for the non-ergodic behavior, and small-angle X-ray scattering (SAXS) revealed that a large methanol content enhanced the aggregation. Moreover, SAXS data also revealed that the surface charge was responsible for anomalous viscosity fluctuations in the binary solvent due to interparticle repulsion within aggregates. Rheological studies showed that the large methanol content in the binary solvent led to frequency-independent behavior of the storage modulus of Laponite® RD.
The incorporation of boron (B) and nitrogen (N) into illite is the key demand-side process responsible for the diagenetic budget of these elements in sedimentary basins, with important implications for pore-water chemistry, natural-gas composition, and borehole geophysics. The purpose of the present study was to take advantage of recent advances in quantitative mineral analysis of sedimentary rocks which have opened new possibilities for investigating this particular process. In order to avoid complications with recycled (detrital) N and B, clays from pyroclastic horizons of sedimentary rocks (bentonites) were used. The B and N contents in illite-smectite were measured in samples from different sedimentary basins, representing a complete range of diagenetic alteration. The bulk-rock chemical measurements, performed on raw rock samples in order to avoid any loss of exchangeable B and N, were referred to the contents of illite-smectite clays and to the content of illite alone, both measured by a combination of XRD and chemistry-based techniques.
Both B and N (as NH4) are present in illite, so their contents in illite-smectite clay increase in a more or less linear manner with progressing illitization. Thus, during diagenesis, the illite-smectite clay is a net consumer of B and N from the pore water. The amount of N in individual illite layers decreases during diagenesis and the amount of B either decreases or remains stable. Bentonitic illite must acquire both B and N from outside of the bentonite bed. In one diagenetic cycle, bentonitic illite fixes up to 800–1000 ppm B and up to >1% N expressed as (NH4)2O, corresponding to >20% of the fixed cation sites.
The wide application of rare earth elements (REEs) in the development of a carbon–neutral society has urged resource exploration worldwide in recent years. Regolith-hosted REE deposits are a major source of global REE supply and are hosted mostly in clay minerals. Nonetheless, the ways in which changes in the physicochemical properties of clay minerals during weathering affect the concentrations of REEs in the regolith are not well known. In the current study, a world-class regolith-hosted REE deposit (Bankeng, South China) has been studied to illustrate further the effect of clay minerals on sorption and fractionation of REEs during weathering to form economic deposits. In the weathering profile, halloysite and illite are abundant in the saprolite due to weathering of feldspars and biotite from the bedrock. During weathering, halloysite and illite transform gradually to kaolinite and vermiculite. The large specific surface area, pore volume, and cation exchange capacity of the clay mineral assemblages are favorable to the sorption of REEs, probably because of the formation of vermiculite. The abundance of vermiculite could explain the enrichment of REEs in the upper part of the lower pedolith. For the saprolite-pedolith interface, halloysite is probably the main sorbent for the REEs, as indicated by the distinctive appearance of pore sizes of 2.4–2.8 nm characteristic of halloysite. The progressive transformation of halloysite to kaolinite reduces the pores and desorbs the REEs, causing REE depletion in the shallower soils. As a result, REEs were mobilized downward and re-sorbed in the lower pedolith-upper saprolite causing gradual enrichment and formation of these regolith-hosted deposits.
The Antalya Unit, one of the allochthonous units of the Tauride belt, is of critical, regional tectonic importance because of the presence of rifting remnants related to the break-up of the northern margin of Gondwana during Triassic time. Paleozoic — Mesozoic sedimentary rocks of the Antalya Unit consist mainly of calcite, dolomite, quartz, feldspar, and phyllosilicate (illite-smectite, smectite, kaolinite, chlorite, illite, chlorite-smectite, and chlorite-vermiculite) minerals. Illite-smectite (I-S) was found in all of the sequences from Cambrian to Cretaceous, but smectite was only identified in Late Triassic-Cretaceous sediments. R0 I-S occurs exclusively in early-diagenetic Triassic—Cretaceous units of the Alakırçay Nappe (rift sediments), whereas R3 I-S is present in late-diagenetic to low-anchimetamorphic Cambrian—Early Triassic units of the Tahtalıdağ Nappe (pre-rift sediments). Kübler Index (KI) values and the illite content of I-S reflect increasing diagenetic grades along with increasing depth. Major-element, trace-element, rare-earth-element (REE), and stable-isotope (O and H) compositions were investigated in dioctahedral and trioctahedral smectites and I-S samples from the pre-rift and rift-related formations. Both total layer charge and interlayer K increase, whereas tetrahedral Si and interlayer Ca decrease from smectite to R3 I-S. Trace-element and REE concentrations of the I-S are greater in pre-rift sediments than in rift sediments, except for P, Eu, Ni, Cu, Zn, and Bi. On the basis of North American Shale Composite (NASC)-normalized values, the REE patterns of I-S in the pre-rift and rift sediments are clearly separate and distinct. Oxygen (δ18O) and hydrogen (δD) values relative to SMOW (Standard Mean Oceanic Water) of smectite and I-S reflect supergene conditions, with decreasing δ18O but increasing δD values with increasing diagenetic grade. Lower dD values for these I-S samples are characteristic of rift sediments, and pre-rift sediments have greater values. On the basis of isotopic data from these I-S samples, the diagenesis of the Antalya Unit possibly occurred under a high geothermal gradient (>35ºC/km), perhaps originating under typical extensional-basin conditions with high heat flow. The geochemical findings from I-S and smectites were controlled by diagenetic grade and can be used as an additional tool for understanding the basin maturity along with mineralogical data.
Enhancement of the physico-chemical properties of elastomers can be achieved by the addition of fillers, such as silica, but the search for less expensive alternative materials continues. The objective of this study was to investigate natural or organically modified clay minerals as such an alternative. Organo-clays modified by quaternary ammonium cations with three methyl groups and longest alkyl chains of different lengths were prepared by ion-exchange reaction of the commercial product JP A030 (Envigeo, Slovakia) based on Jelšový Potok bentonite with organic salts: tetramethylammonium (TMA) chloride, octyltrimethylammonium (OTMA) bromide, and octadecyltrimethylammonium (ODTMA) bromide. Physico-chemical characterizations of the organo-clays used as fillers in rubber nanocomposites and their mechanical properties were measured using Fourier transform infrared (IR) spectroscopy, which provided information on the chemical composition of the mineral and on the amount of organic moieties adsorbed. X-ray diffraction analysis (XRD) was used to monitor the arrangement of organic chains in galleries of montmorillonite and showed that the longest-chain alkylammonium ODTMA+ ions were intercalated between layers, adopting a pseudotrimolecular conformation, while OTMA+ and TMA+ were in monomolecular arrangement. Surface areas were measured by sorption of N2 and ethylene glycol monoethyl ether. Natural rubber-clay nanocomposites were prepared by melt intercalation, in some cases also with addition of silica, a conventional reinforcing filler. The microstructure of montmorillonite in these composites was characterized by XRD analysis. The effect of clay and organo-clays loading from 1 to 10 phr (parts by weight per hundred parts of rubber) on stress at break, strain at break, and Modulus 100 (M100) was investigated by tensile tests. Filler ODTMA-JP A030 appears to be the most effective among the organoclays; surprisingly similar values of composite elongation and strength were obtained with unmodified bentonite JP A030.
The adsorption of hexadecyltrimethylammonium (HDTMA) in smectite was studied by adsorption isotherms, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Smectites that had reacted for 48 h with HDTMA cations equivalent to 0.2–3.0 times the cation exchange capacity (CEC) were converted to HDTMA-exchanged smectites with various d-spacings. Study of HDTMA-smectites by HRTEM suggests that the HDTMA adsorption results in interlayer expansion with various d-spacings and irregular wavy layer structures. We believe that HDTMA loading beyond the CEC of smectite affects the structure of clay by the additional adsorption of HDTMA-Br− via hydrophobic bonding. Surfactant orientation probably depends on the quantity of surfactant in the interlayer. Our TEM study shows that the structure of the adsorbed HDTMA layer in the interlayers of smectite depends on the charge distribution and chemical composition of smectite.
In recent years KAlSiO4 polymorphs have become minerals of interest from an industrial point of view; they have various applications in technological and medical fields. The costs of synthesis processes are often significant and so, in the present study, an attempt was made to develop a new synthesis protocol using a widely available and inexpensive, natural starting material. The KAlSiO4 polymorphs synthesized here were kalsilite and KAlSiO4-01 — 01 refers to the high-temperature polymorph of KAlSiO4 (Cook et al., 1997; Gregorkiewitz et al., 2008; Kremenovic et al., 2013). KAlSiO4 polymorphs were synthesized using kaolin; the effects of time and temperature on the synthesis process were investigated. A solid-state synthesis protocol was developed which required the mixing of the calcined kaolin with K2CO3 in stoichiometric proportions at temperatures of 700 and 800°C at atmospheric pressure. Crystallization of kalsilite at 700°C was demonstrated while that of KAlSiO4-01 was revealed at 800°C. Synthetic kaliophilite H2 was found in both of the experiments as a metastable phase. The products of synthesis were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma optical emission spectrometry (ICP-OES), infrared spectroscopy (IR), and 29Si magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (29Si MAS NMR). Calculation of cell parameters (through Rietveld refinement) and the density and specific surface area of the phases synthesized was also achieved. The amount of amorphous phase in the synthesis powders was estimated by means of quantitative phase analysis using the combined Rietveld and reference intensity ratio methods. In particular, the results of the spectroscopic, chemical, and morphological characterizations are in agreement with the data available for these minerals in the literature, thus confirming the effectiveness of the experimental protocol. The quantitative phase analysis (QPA) also indicated the high purity of the powders synthesized, thus allowing for industrial applications.
A modified procedure for bentonite purification and a new method for the quantitative characterization of bentonite using smectite content are reported. Bentonite found in a drill core of Tsunagi Mine, Niigata, Japan was evaluated by the new method to demonstrate the substantial increase in smectite content from 40% in the original bentonite to 75% after purification using a new procedure. Powder samples were prepared by putting blocks of bentonite into acetone to remove water without mechanical crushing. The powdered, acetone-dried bentonite was purified by a dispersion-sedimentation method in water after cation exchange of the interlayer Ca2+ ion with Na+ ion by the reaction of raw bentonite with aqueous NaCl. The purification was evaluated using X-ray diffraction and thermogravimetric analyses (TG). The raw bentonite contained feldspar, quartz, and cristobalite, and feldspar and quartz were removed by the new purification procedure. The purification was evaluated quantitatively by comparing the TG data before and after the purification. The purified bentonite swelled in water to give a stable aqueous suspension and 3 g of purified bentonite dispersed in 60 mL of water was stable for several days. The replacement of interlayer sodium with dibehenyldimethylammonium gave an organophilic clay, which swelled in toluene. The bentonite has potential practical uses as a purified bentonite and an organophilic bentonite.
The conventional cauliflower-like shape of magadiite imposes serious limitations on its applications in adsorption, catalysis, ion exchange, etc. To overcome this problem, a method to prepare it with plate-like structures was developed. This novel approach is based on an interface-controlled heterogeneous nucleation process. Zirconia grinding balls with diameters of 2.0 mm were dispersed in the starting solution to provide solid-liquid interfaces. Then the starting solution with a SiO2:NaOH:H2O molar ratio of 9:2:75 was subjected to hydrothermal treatment at 433 K for 96 h. The presence of the solid-liquid interface improved the crystallization yield and controlled the morphology and specific surface area of the crystals. With the zirconia balls, the yield and sizes of the plate-like magadiite were 52 wt.% and 1–3 μm, respectively. In the absence of zirconia balls, the yield was smaller (45 wt.%) and magadiite shaped like cauliflower was formed. The plate-like magadiite had a specific surface area of 66 m2 g−1 and a pore-size distribution between 4 and 5 nm, compared with a surface area of 28 m2 g−1 for the cauliflower-like magadiite. In addition, the plate-like magadiite was a more effective ion exchanger than the cauliflower-like magadiite with a cation exchange capacity of 64.5 mmol/100 g (compared to 53.8 mmol/100 g for the cauliflower-like form) and it had a faster sorption rate for calcium ions.
The configuration of hydroxyl groups around the octahedral cations of 2:1 phyllosilicate minerals has long been an important question in clay science. In the present study, 27Al multiple quantum (MQ) magic angle spinning nuclear magnetic resonance (MAS NMR) was applied to the local structural analysis of octahedral Al positions in a purified Na-montmorillonite. Three octahedral Al sites ([6]Ala, [6]Alb, and [6]Alc) are distinguished by 27Al 5QMAS NMR, whereas these sites are not differentiated by 27Al MAS and 3QMAS NMR. The isotropic chemical shift (δcs) and the quadrupolar product (PQ) were estimated to be 5.8 ppm and 2.6 MHz for [6]Ala, 6.2 ppm and 3.0 MHz for [6]Alb, and 6.7 ppm and 3.7 MHz for [6]Alc, respectively. The three Al sites originated from geometric isomers with cis and trans structures, which have mutually different configurations of the OH groups around the central Al3+ ions. From the view point of symmetry for the OH groups, [6]Ala and [6]Alb in the upfield region were assigned to cis sites, and [6]Alc in the downfield region was assigned to a trans site. The occurrence of multiple Al sites implies that Na-montmorillonite used in the present study has cis-vacant structure in the octahedral sheet. This is a reasonable insight, supported by the chemical composition and the differential thermal analysis data of the Na-montmorillonite.
Palygorskite and sepiolite are fibrous clays that occur mostly in agricultural soils of arid regions. Although many investigations have examined the environmental conditions for the formation and stability of these clays, information on the transformation of these clays in the root zone (or rhizosphere) of agricultural crops is limited. In this study, changes in palygorskite and sepiolite within the rhizosphere of selected agricultural crops were determined and the ability of plants to extract Mg from these minerals compared. Alfalfa, barley, and canola were cultivated in pots under controlled conditions in a growth chamber using growth media that consisted of a mixture of Ottawa sand and clay-sized Florida palygorskite (PFl-1) or Spanish sepiolite (SepSp-1). After 100 days of cultivation, the biomass of plant roots and shoots were determined and Mg uptake measured by inductively coupled plasma analysis of the plant biomass after microwave oven digestion. The clay fraction in each pot was separated from the sand and analyzed using X-ray diffraction (XRD) and examined using transmission electron microscopy (TEM). The XRD reflection at 0.718 nm clearly indicated kaolinite in the rhizosphere after growth of the three crops. Furthermore, hexagonal kaolinite particles were observed, using TEM, and the amount of Mg extracted by the three crops was significantly greater for sepiolite than for palygorskite. Palygorskite and sepiolite kaolinization in the rhizosphere was apparently due: (1) to high acidity in the rhizosphere caused by root activity and organic matter decomposition; and (2) to fibrous clay destabilization caused by Mg uptake by plants. This study shows that kaolinite in agricultural soils of arid and semi-arid regions might be partly due to neoformation after fibrous clay dissolution and not entirely inherited from parent materials, as has been suggested in earlier literature.
An experimental program was conducted to investigate the water-vapor sorption characteristics of smectite and kaolinite mixtures. End-member smectite and kaolinite were slurry-mixed together at mass-controlled ratios corresponding to 0%, 20%, 50%, 70%, 80%, 90% and 100% smectite. Vapor desorption isotherms for the mixtures were measured at 24°C for relative humidity (RH) ranging from ∼95% to 0%.
Results show that the amount of water adsorbed by the clay mixtures at a given RH increases systematically with increasing smectite content. Derivative analysis of the sorption isotherms shows evidence of transitions between the two-, one- and zero-layer hydrate-states for the smectite-rich mixtures. The transitions become less apparent as the smectite content decreases. Monolayer coverage, specific surface area, and heat of adsorption were estimated from the isotherms using BET theory. It is shown that monolayer coverage and specific surface for the clay mixtures can be reasonably approximated by weighted averaging of the end-member clay properties. General methodologies are presented for predicting the sorption behavior (i.e. soil-water characteristics) and effective specific surface area from measurements of the end-member sorption isotherms.
The phosphate adsorption properties of three clay samples, with kaolinite as the dominant mineral, from different deposits in the Ivory Coast have been investigated. The clays contain varying amounts of crystalline Fe oxides and kaolinite with structural Fe. All measurements were made in dilute suspension under controlled conditions of temperature, pH, ionic strength and saturating cation. Data have been fitted to Langmuir adsorption isotherms. Both P adsorption and surface area measurements have been made on samples before and after chemical removal of Fe oxides. The samples have large P adsorption capacities, which are not entirely explained by their large specific surface areas. The presence of Fe oxides makes a strong contribution to the surface area and enhances the adsorption capacities. There is little evidence that structural Fe makes a strong contribution to the enhanced P adsorption capacity.