To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article focuses on three of Beat Furrer's works described as opera or music theatre: Begehren (2001), FAMA (2005) and Wüstenbuch (2010). Each of these pieces sets texts from Roman, contemporary and historical authors in exploration of the liminal spaces between life and death, and the possible transitions between them. In Wüstenbuch one such text is included from the Papyrus Berlin 3024, known as the source of the Ancient Egyptian philosophical text ‘The Dispute between a Man and his Ba’, a reflection on the meaning and value of life and the transition between life and death. Furrer's compositional style does not offer a linear narrative on such questions but rather multiple perspectives and tableaux, each of which calls the others and itself into question. In order to explore this and understand what the meeting and interchange of the different texts and authors offers within the context of Furrer's music, I outline a method of ‘listening intertextually’ in order to hear the liminal spaces not only within but between these compositions. I consider the hybrid and hypertexts that arise within the music, and the ways that they can be therefore considered – as in the subtitle often given to FAMA – a ‘drama of listening’.
The chemical and structural properties of Mg smectites in the Vicálvaro sepiolite deposit have been studied in detail. The characterization was performed on different size-fractions of selected smectitic samples (5−2 µm; 2−1 µm; 1−0.5 µm; <0.5 µm and <0.1 µm). The chemical compositions of individual particles (5−1 µm) and of bulk undifferentiated fine fractions (1−<0.1 µm) were determined by energy dispersive spectroscopy-scanning electron microscopy and interpreted with the aid of X-ray diffraction (XRD) and infrared spectroscopy (IR) methods. The XRD and IR data demonstrate that all of the Mg smectite materials studied are mainly composed of a complex mixture of stevensite, saponite and mica-type minerals. Although the presence or absence of saponite cannot be confirmed absolutely, stevensite is a significant component of these Mg smectites. This is proven by the calculated layer charge reduction after the Hofmann-Klemen effect. The results are in close agreement with the suggested mechanism of topotactic overgrowth of stevensite on pre-existing phyllosilicate templates. This characterizes clay diagenesis in saline-lake systems.
Reduced-charge samples were prepared from Li+- and Ni2+-saturated SAz-1 montmorillonite by heating at 150 and 300°C for 24 h. X-ray diffraction analysis showed interstratification of non-swelling and swelling interlayers in LiS150, while fully expandable interlayers were found in NiS150. Heating at 300°C caused collapse of the interlayers in LiS300 in contrast to NiS300, for which some expandable layers were interstratified in the pseudo-pyrophyllite structure. The infrared (IR) spectra of heated Li-SAz showed new OH-stretching and overtone bands near 3670 cm−1 and 7170 cm−1 (1395 nm), respectively, indicating creation of local trioctahedral domains containing Li(I) in the previously vacant octahedra. No evidence of OH groups in trioctahedral coordination was found in the spectra of heated Ni-SAz. Nickel is supposed to be trapped in the hexagonal holes of the tetrahedral sheets. Reduction of the layer charge substantially affected the extent of the dissolution of SAz-1 montmorillonite in HCl. The MIR and NIR spectra of unheated Li- and Ni-SAz showed a substantial degradation of their structure after acid dissolution. New bands observed at 3744 cm−1 and 7314 cm−1 (1367 nm) were assigned to the vibrations of Si-OH groups formed upon acid treatment. These bands are a means of checking the extent of acid attack on smectites, even in cases when no differences are observed in the 1300−400 cm−1 spectral region (traditionally used to monitor this process). Both the IR spectra and solution analysis revealed that development of non-swelling interlayers in heated montmorillonites substantially reduced dissolution of these samples. The results obtained confirmed that acid attack of the smectite structure occurred at both interlayer surfaces and edges. If the accessibility of the layers for protons is low due to non-swelling interlayers, the dissolution was slower and took place mainly from the particle edges.
Crystal truncation rod (CTR) X-ray diffraction is an invaluable tool for measuring mineral surface and adsorbate structures, and has been applied to several environmentally and geochemically important systems. Traditionally, the method has been restricted to single crystals with lateral dimensions >3 mm. Minerals that meet this size criterion represent a minute fraction of those that are relevant to interfacial geochemistry questions, however. Crystal screening, data collection, and CTR measurement methods have been developed for crystals of <0.3 mm in lateral size using the manganese oxide mineral chalcophanite (ZnMn3O7·3H2O) as a case study. This work demonstrates the feasibility of applying the CTR technique to previously inaccessible surfaces, opening up a large suite of candidate substrates for future study.
Mud shale is characterized by low strength and strong swelling, with rheological effects and deformation caused by drilling fluid and formation water. Establishing a rheological model to characterize the deformation characteristics is key to solving the problem of wellbore stability. The influence of moisture content on rock strength and creep mechanical properties were studied by means of water absorption, uniaxial compression, and creep tests. The tests showed that with the increase in moisture content, the elastic modulus and strength of hard brittle mud shale decreased. Further, under the same load, the instantaneous strain increased with increasing moisture content. Meanwhile, under various loading stresses, rock creep exhibited non-linear characteristics, which can be divided into three different creep stages: attenuated creep, stable creep, and accelerated creep. Starting with a non-linear viscous dashpot, and then introducing aging degradation and water-bearing weakening effects, based on the water-bearing creep characteristics of hard brittle shale as well as the modeling ideas of the classic component combination model, a new improved creep model based on the Nishihara model was established to describe the characteristics of the accelerated creep stage of hard brittle mud shale with various moisture contents. Subsequently, the Levenberg–Marquardt non-linear, least-squares method was adopted to invert the creep parameters. The results showed that the simulated creep curves achieved by employing the new creep model were consistent with the experimental results, thereby confirming the ability of the new non-linear creep model to provide a theoretical reference for the study of wellbore stability of hard brittle mud shale.
Sub-micrometer clay particles are of interest in clay-polymer applications, especially when transparency is important. The scattering of light can be reduced by the adjustment of the refractive index (RI) of the clays to that of the matrix. In this study, the RI of sub-micrometer illite particles was changed by treatment with 5 M HCl for treatment times ranging between 2 and 24 h. The dissolution of Fe leads to a decrease in the RI of illite from 1.587 for the unaltered material to 1.502 after 24 h. The layer structure of the illite particles was preserved during the treatment. The RI of the sub-micrometer illite particles was determined by means of a photospectrometer measuring the light intensity passing through suspensions containing the clay particles, with varying refractive indices.
Modified kaolinites possess excellent adsorption properties and, therefore, are regarded widely as potential catalytic components. The use of modified kaolinites as a catalytic component for Fischer–Tropsch synthesis (FTS) has remained unexplored, however. In the current study, delaminated and pit-rich nano-kaolinite was prepared via acid treatment of N-methylformamide (NMF)-intercalated kaolinite (intercalation-etching strategy), and was used as a support to prepare a cobalt-based FTS catalyst (denoted as 15%-Co-HNKln). Compared with other FTS catalysts, the supports for which were raw kaolinite or directly acid-treated kaolinite, the 15%-Co-HNKln showed several advantages such as large specific surface area, dispersed Co particles with small particle size, more new active sites, and significant surface acidity. Given the aforementioned advantages, the 15%-Co-HNKln catalyst demonstrated very good FTS performance. Compared with that of the raw kaolinite-supported FTS catalyst, the CO conversion rate and C5–C12 hydrocarbon selectivity of 15%-Co-HNKln increased by 20% and 15%, respectively.
Kaolin samples from the Jari deposit (Amazon region) were studied using various techniques to characterize its structural and crystallochemical aspects, and to establish its origin and evolution. A profile 60 m thick was selected in a kaolin mine (Morro do Felipe) located at the banks of the Jari river. Despite the great thickness of the deposit and the variety of kaolin types, the mineralogical composition is rather homogeneous and is mainly kaolinite associated with gibbsite and small amounts of quartz, anatase, goethite and hematite. The field observations and the morphological analysis indicate the existence of sedimentary features throughout the whole profile except for the upper aluminous clayey layer (Belterra Clay). This is evidence that the Rio Jari kaolin deposit originated from sedimentary material, the Alter do Chão Formation. The presence of alternating clay and sandy layers is explained by sedimentation processes with great depositional energy variation. Thus, the accumulation of thick clay layers was related to a low-energy phase, and during the high-energy phases, the deposition process led to the accumulation of sandy materials, constituted essentially of quartz and showing strong textural and structural variation. Later on, periods of hydromorphy were responsible for iron removal and consequently for the bleaching of the sedimentary formation. The crystallinity data show an increase of the structural disorder toward the surface associated with an increase in the amount of structural Fe in the kaolinite. The Rio Jari kaolin deposits should be considered as having originated from kaolinitic clay sediments of the Alter do Chão formation (protore) that was submitted to intensive lateritic weathering processes.
Interpreters unanimously read ἐνευλογηθήσονται in Gen 12:3b LXX as a passive. Good evidence, however, exists to challenge and problematize this conclusion. Recent linguistic studies on the ancient Greek middle voice reveal that aorist and future -θη- forms express a semantically middle domain. When we reexamine the word ἐνευλογέομαι within this light, a better option emerges for seeing its -θη- forms as manifestations of speech actions within this middle domain. In their own unique ways, the LXX as well as Philo, Paul, and Acts further corroborate this alternative. As a result, we may read ἐνευλογηθήσονται in Gen 12:3b LXX as a speech action middle: “to pronounce blessings.” The proposed reading promotes a better understanding of Abraham within Genesis LXX. Rather than a means to an end, Abraham remains at the center of God’s blessing as the earth’s families cry out: “God make me like Abraham!”
Study of the transformation of smectite to illite, chlorite or vermiculite via interstratified clay minerals needs precise qualitative and quantitative determinations of the different layers in the mixed-layer clays and is generally based on X-ray diffraction (XRD) patterns after specific treatments of the clay samples. Saturation with K or Mg followed by ethylene glycol (EG) solvation are classical methods used to identify high-charge smectite and vermiculite. These procedures have been applied to two experimental clays, one composed of smectite layers and the second, a mixture of vermiculite and smectite layers. Different methods of glycolation (EG vapor or liquid EG) produce significant differences in the XRD patterns. Comparison with literature data indicates that K-saturated, high-charge smectite (≈0.8 < total charge <1/unit-cell) and Mg-vermiculite (whatever its charge) do not expand in ethylene glycol vapor (d values ≈14–15 Å). Expansion to 17 Å in liquid ethylene glycol occurs for Mg-vermiculite with a total charge of <~1.2/unit-cell and for K-saturated, high-charge smectite, when the tetrahedral charge is <≈0.7/unit-cell. This study shows that: (1) glycolation procedures need to be standardized; (2) the use of saturation protocols using both liquid ethylene glycol and ethylene glycol vapor yields useful additional information about the distribution of charges in clay minerals.
Study of the behavior of landfill lining materials (clays) in organic solvents is important because, in waste management, lining prevents groundwater contamination by the adsorption of various pollutants such as chemicals and organic solvents. Although scaling behavior and the self-association property of clays in water-alcohol binary solvents have been studied by many researchers, the anomalous behavior of Laponite XLG in binary solvents requires investigation as suggested by previous studies. In the present study, Laponite® RD, which is structurally similar to Laponite XLG, was used to gain further insight into the reasons for the anomalous viscosity, aggregation, and non-ergodic behavior of clay in a water–methanol binary solvent. Dynamic light scattering (DLS) revealed the emergence of the non-ergodic phase of 3% w/v Laponite® RD in the water–methanol binary solvent, which increased in the presence of a large methanol content as well as with aging time in the binary solvent. Viscosity measurements further indicated that aggregation was responsible for the non-ergodic behavior, and small-angle X-ray scattering (SAXS) revealed that a large methanol content enhanced the aggregation. Moreover, SAXS data also revealed that the surface charge was responsible for anomalous viscosity fluctuations in the binary solvent due to interparticle repulsion within aggregates. Rheological studies showed that the large methanol content in the binary solvent led to frequency-independent behavior of the storage modulus of Laponite® RD.
The incorporation of boron (B) and nitrogen (N) into illite is the key demand-side process responsible for the diagenetic budget of these elements in sedimentary basins, with important implications for pore-water chemistry, natural-gas composition, and borehole geophysics. The purpose of the present study was to take advantage of recent advances in quantitative mineral analysis of sedimentary rocks which have opened new possibilities for investigating this particular process. In order to avoid complications with recycled (detrital) N and B, clays from pyroclastic horizons of sedimentary rocks (bentonites) were used. The B and N contents in illite-smectite were measured in samples from different sedimentary basins, representing a complete range of diagenetic alteration. The bulk-rock chemical measurements, performed on raw rock samples in order to avoid any loss of exchangeable B and N, were referred to the contents of illite-smectite clays and to the content of illite alone, both measured by a combination of XRD and chemistry-based techniques.
Both B and N (as NH4) are present in illite, so their contents in illite-smectite clay increase in a more or less linear manner with progressing illitization. Thus, during diagenesis, the illite-smectite clay is a net consumer of B and N from the pore water. The amount of N in individual illite layers decreases during diagenesis and the amount of B either decreases or remains stable. Bentonitic illite must acquire both B and N from outside of the bentonite bed. In one diagenetic cycle, bentonitic illite fixes up to 800–1000 ppm B and up to >1% N expressed as (NH4)2O, corresponding to >20% of the fixed cation sites.
The wide application of rare earth elements (REEs) in the development of a carbon–neutral society has urged resource exploration worldwide in recent years. Regolith-hosted REE deposits are a major source of global REE supply and are hosted mostly in clay minerals. Nonetheless, the ways in which changes in the physicochemical properties of clay minerals during weathering affect the concentrations of REEs in the regolith are not well known. In the current study, a world-class regolith-hosted REE deposit (Bankeng, South China) has been studied to illustrate further the effect of clay minerals on sorption and fractionation of REEs during weathering to form economic deposits. In the weathering profile, halloysite and illite are abundant in the saprolite due to weathering of feldspars and biotite from the bedrock. During weathering, halloysite and illite transform gradually to kaolinite and vermiculite. The large specific surface area, pore volume, and cation exchange capacity of the clay mineral assemblages are favorable to the sorption of REEs, probably because of the formation of vermiculite. The abundance of vermiculite could explain the enrichment of REEs in the upper part of the lower pedolith. For the saprolite-pedolith interface, halloysite is probably the main sorbent for the REEs, as indicated by the distinctive appearance of pore sizes of 2.4–2.8 nm characteristic of halloysite. The progressive transformation of halloysite to kaolinite reduces the pores and desorbs the REEs, causing REE depletion in the shallower soils. As a result, REEs were mobilized downward and re-sorbed in the lower pedolith-upper saprolite causing gradual enrichment and formation of these regolith-hosted deposits.
The Antalya Unit, one of the allochthonous units of the Tauride belt, is of critical, regional tectonic importance because of the presence of rifting remnants related to the break-up of the northern margin of Gondwana during Triassic time. Paleozoic — Mesozoic sedimentary rocks of the Antalya Unit consist mainly of calcite, dolomite, quartz, feldspar, and phyllosilicate (illite-smectite, smectite, kaolinite, chlorite, illite, chlorite-smectite, and chlorite-vermiculite) minerals. Illite-smectite (I-S) was found in all of the sequences from Cambrian to Cretaceous, but smectite was only identified in Late Triassic-Cretaceous sediments. R0 I-S occurs exclusively in early-diagenetic Triassic—Cretaceous units of the Alakırçay Nappe (rift sediments), whereas R3 I-S is present in late-diagenetic to low-anchimetamorphic Cambrian—Early Triassic units of the Tahtalıdağ Nappe (pre-rift sediments). Kübler Index (KI) values and the illite content of I-S reflect increasing diagenetic grades along with increasing depth. Major-element, trace-element, rare-earth-element (REE), and stable-isotope (O and H) compositions were investigated in dioctahedral and trioctahedral smectites and I-S samples from the pre-rift and rift-related formations. Both total layer charge and interlayer K increase, whereas tetrahedral Si and interlayer Ca decrease from smectite to R3 I-S. Trace-element and REE concentrations of the I-S are greater in pre-rift sediments than in rift sediments, except for P, Eu, Ni, Cu, Zn, and Bi. On the basis of North American Shale Composite (NASC)-normalized values, the REE patterns of I-S in the pre-rift and rift sediments are clearly separate and distinct. Oxygen (δ18O) and hydrogen (δD) values relative to SMOW (Standard Mean Oceanic Water) of smectite and I-S reflect supergene conditions, with decreasing δ18O but increasing δD values with increasing diagenetic grade. Lower dD values for these I-S samples are characteristic of rift sediments, and pre-rift sediments have greater values. On the basis of isotopic data from these I-S samples, the diagenesis of the Antalya Unit possibly occurred under a high geothermal gradient (>35ºC/km), perhaps originating under typical extensional-basin conditions with high heat flow. The geochemical findings from I-S and smectites were controlled by diagenetic grade and can be used as an additional tool for understanding the basin maturity along with mineralogical data.