To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
At present, no production of zeolites is ongoing in Colombia; thus, because of the high demand in the industrial sector, ~2500 tons is imported annually from other countries such as Cuba, Ecuador, Mexico, and the United States. In order minimize the need for these costly imports, the present study sought to evaluate the viability of producing low-silica zeolites through the hydrothermal synthesis of a Colombian kaolin, which contains quartz (40%) and iron-oxide impurities. The kaolin was subjected to a milling process to reduce the particle size to the order of 11 μm, and was heat treated to transform it to metakaolin. Optimization of the synthesis variables (Na2O/SiO2 and H2O/Al2O3 ratios, time, and temperature) was accomplished by applying an experimental design based on the ‘Response Surface Methodology’ technique. The degree of crystallinity and the cation exchange capacity (CEC) were used as response variables. The CEC was determined from the NTC 5167 standard. In addition, the mineralogical composition and the zeolite microstructure were evaluated using techniques such as scanning electron microscopy, X-ray diffraction, and solid state nuclear magnetic resonance spectroscopy. The results indicated that synthetic type A zeolites with a CEC value of 442 cmol(+)/kg can be obtained from the Colombian kaolin, with the following optimal processing conditions: Na2O/SiO2 molar ratio of 2.7, H2O/Al2O3 molar ratio of 150, temperature = 66°C, and processing time = 8 h. Note that this value (442 cmol(+)/kg) is greater than that reported for an imported commercial zeolite (408 cmol(+)/kg) of the same type, which is currently being used in industry in Colombia. The nationwide availability of the raw material and the quality of the final product present opportunities to make this material available to the Colombian market.
A version of thermoporometry dedicated to analyzing the pore network of expanding clays is proposed here. The blurred, wide Differential Scanning Calorimetry (DSC) peak obtained upon the melting of a frozen clay sample is processed by means of a deconvolution analysis based on searching for such a temperature distribution of “pulse-like heat events” which, convolved with the apparatus function, gives a minimal deviation from the observed heat flux function, i.e. the calorimetric signal. As a result, a sharp thermogram was obtained which can be transformed easily into the pore-size distribution curve. Results obtained for samples of two Clay Minerals Society Source Clays (montmorillonites SWy-2 from Wyoming and STx-1b from Texas) at different water contents indicate a greater resolution and sensitivity than that achieved by classical thermoporometry using the unprocessed DSC signal. Phenomena corresponding to the evolution of the pore network as a function of the water content have been detected in samples with large water contents subjected to free drying prior to the experiments.
The modification of montmorillonite with metallic species affects directly its crystalline structure, texture, porosity, and surface. The interaction of the metallic molecules with the clay matrix, derived from the modification pathway and the characteristics of the adsorbate, modifies the physicochemical properties of montmorillonite, enabling the creation of materials with varied characteristics to be used both as catalysts and adsorbents. Small amounts of metallic species can confer various structural and physicochemical characteristics on the same montmorillonite matrix, depending on the metal incorporated. The objective of the present study was to create an acid-base catalyst based on montmorillonite K10 (K10 Mnt), modified with Ti, Ce, and Ni, for the catalytic esterification of acetic acid and penta-1-ol. K10-Mnt was modified using particles of Ti and of Ti modified with Ce and Ni. The effect of the inclusion of Ti and modified Ti species on the transformation of the physicochemical properties of the K10 Mnt and their contributions to the catalytic esterification syntheses were investigated. Samples were characterized by scanning electron microscopy coupled to an energy-dispersive X-ray spectroscopy system (SEM-EDS), powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), physisorption of N2 at 77 K (BET and BJH), and thermogravimetric analysis (TGA-DTGA). Finally, the original and modified K10 Mnt samples were tested for their catalytic esterification of acetic acid and penta-1-ol in the liquid phase.
Mixed-layer illite-smectite with high degree of ordering (rectorite-like clay) and with three types of interlayer cations — K+, Na+ and , was determined in the high-sulfide epithermal mineralization of the Western Carpathian Mountains. The tobelitic portion of the clay comprises 5–10%. Ammonium was detected both by chemical analysis and by Fourier transform infrared analysis. Some of the ammonium can be assigned to a poorly bound form, not fully fixed in the illitic interlayer. The finest size fraction separated from the samples behaves differently from the rest of the sample. It contains two layers of water molecules in the expandable interlayers as determined by X-ray diffraction, whereas coarser fractions have only one water layer in the interlayers.
The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest.
The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or ‘flesh-eating’ infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections.
Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer.
Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria.
Three Ultic Haplorthods with significant illuviation of clay and spodic materials in the subalpine forests located in the Alishan area of central Taiwan were selected to identify the clay mineral compositions by X-ray diffraction (XRD) and to explain the transformation of the clay minerals. The three pedons are dominated by vermiculite and vermiculite-illite interstratified minerals, and they have minor kaolinite, quartz and gibbsite. No hydroxy interlayered vermiculite (HIV) was found in the E horizon of the three pedons because the forest soils are very acidic and have very low Al contents. The presence of HIV in the spodic (Bhs) and argillic horizons (Bt) of the three pedons was associated with greater free Fe and Al contents (Fed and Ald), more favorable pH ranges, and coatings of organo-metallic complexes which prevented continuous weathering. The specific pedogenic process, clay illuviation and podzolization occurred sequentially in the Alishan area, and induced the unusual clay mineral distribution and transformation. The largest amounts of illite are in the C horizon and the amounts of vermiculite increased with decreasing soil depths. A reverse distribution between illite and vermiculite through the soil profile was observed. Illite was transformed to vermiculite due to the strong weathering environment associated with extremely low exchangeable K contents. The weathering sequence of clay minerals of Spodosols with fine textures in the study area is proposed as: illite → vermiculite (or interstratified vermiculite-illite minerals) → HIV and vermiculite.
Using 19F magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, we show that most of the fluoride present in the KGa-lb reference kaolinite from Washington County, Georgia, occurs as a surface-adsorbed species bonded to Al. This surface fluoride can be removed from the <2 µm fraction by acid wash, but is largely retained in the coarse fraction. Correlation of integrated 19F NMR peak intensities with fluoride sorption experiments indicates a bulk F content of ∼144 ppm for KGa-1b, of which ∼30% substitutes for hydroxyl sites in the mineral structure and the remaining 70% occurs adsorbed on particle surfaces, corresponding to an edge surface fluoride density of ∼0.7 F− nm−2. 19F{27Al} TRAPDOR (TRAnsfer of Populations in DOuble Resonance) NMR data for the original kaolinite and for products of F− sorption experiments at pH 4 show that all of the observed 19F signals arise from fluoride bonded to Al atoms. Furthermore, bridging Al-F-Al sites and terminal Al-F give distinctly different TRAPDOR fractions allowing assignment of resolved peaks based on the number of Al in the first coordination sphere. This result was confirmed for fluoride adsorbed to the surface of gibbsite from aqueous suspension. No evidence was found for Si-F-type environments on the kaolinite surfaces.
To resolve the existing ambiguities in the interpretation of the OH-stretching vibrations of kaolinites, relationships were, for the first time, established between the structural and Fourier-transform infrared (FTIR) spectroscopic features for a set of kaolinite samples which differed in terms of their relative amounts of coexisting high- and low-ordered phases. For this purpose, a representative collection of kaolinites differing in origin, particle size, and degree of disorder was studied by powder X-ray diffraction (XRD) and FTIR spectroscopy. Modeling of the experimental XRD patterns based on the orthogonal layer unit cell having a mirror plane showed each sample to be a mixture of nearly defect-free high-ordered (HOK) and low-ordered (LOK) kaolinite phases, with HOK varying from 86 to 4%. The wavenumbers, heights, areas, and full widths at half-maximum (FWHM) were determined for the OH-stretching bands at ~3697 (ν1), ~3670 (ν2), ~3652 (ν3), and 3620 cm–1 (ν4) by decomposition and fitting of the FTIR spectra. The FWHM(ν1)/FWHM(ν4) and FWHM(ν3)/FWHM(ν2) values were related linearly to the HOK content, which may be associated with the in-phase and out-of-phase character of the corresponding pairs of vibrations, respectively. A novel interpretation was suggested for the variations in the relative integrated intensities of the OH bands with the amount of the HOK phase. The intensity distribution of the ν2 and ν3 bands is controlled by the triclinic structure symmetry in the defect-free kaolinite and the mirror symmetry of the layers in low-ordered structures, in agreement with the observed evolution of the corresponding band intensities. The ν1 and ν2 band positions for the low-ordered samples are within the wavenumber range for the high-ordered samples. In contrast, the ν3 and ν4 band positions for the low-ordered samples are shifted toward higher wavenumbers, indicating that some of the low-ordered kaolinites should contain dickite-like structural fragments distributed among kaolinite layers.
The Digital Public Library of America (DPLA) enables the discovery of digitized content held by U.S. cultural heritage institutions by aggregating metadata contributed from participating organizations. The DPLA differs from other resource sharing networks by providing not only the locality of an item from a catalogue such as WorldCat but offers easy access to the digitized item itself. Particularly for smaller libraries, archives, and museums, including content in the DPLA makes that content much easier for users to discover, access, and contextualize than it would be otherwise. The DPLA uses what they call the Hub Model made up of Service Hubs and Content Hubs to aggregate metadata from their partners and contribute it to DPLA. This allows state and regional collaborations to onboard small institutions, adding online texts, photographs, manuscript material, artwork and more.
The impact of alkaline solutions (pH = 13.2) on the clay mineralogy of the Callovo-Oxfordian formation hosting the French underground laboratory for nuclear waste disposal investigation (Meuse-Haute Marne site) has been studied experimentally. Initially, each of the four samples selected as representative of the mineralogical transition in this Callovo-Oxfordian formation consists of a mixture of three main clay phases: discrete illite, discrete smectite and a randomly interstratified mixed-layered mineral (MLM) containing ∼65% of non-expandable layers. Clay separates were altered in batch reactors at 60°C using high solution:solid ratios. The mineralogy of this clay fraction and solution chemistry were monitored as a function of reaction time. In addition, the interactions between organic matter and clay particles were investigated using scanning transmission X-ray microscopy (STXM).
The clay mineralogy is little affected even though the pH is still high after 1 y reaction time. The only significant mineralogical evolution is the partial dissolution of the discrete smectite component leading to the formation of a new randomly interstratified illite-expandable MLM. Additional mineralogical transformations lead, for one sample, to the dissolution of micro-crystalline quartz and, for another sample, to the crystallization of a tobermorite-like phase. The low reactivity of clay minerals may be attributed to the presence of organic matter in the samples. In their initial state, all outer surfaces of clay particles are indeed covered with organic matter. After 1 y reaction time, STXM studies showed the basal surfaces of clay particles to be devoid of organic matter, but their edges, which are the most reactive sites, were still protected.
Cobalt (II) and Al (III) layered double hydroxides were precipitated from homogeneous solutions using urea hydrolysis under hydrothermal conditions. The particle sizes were controlled successfully by changing the reaction temperature and period. It was found that larger particles formed by reactions at lower temperatures over longer reaction periods because the slow urea hydrolysis at lower temperatures suppresses the formation of nuclei in the solution. When the reaction was conducted at 60°C for 100 days, particles >40 µm wide were obtained.
Investigation of the organization of interlayer water and cations in smectite is a permanent topic in clay science for environmental science, civil engineering, materials science, and industrial applications. Experimental X-ray (or neutron) diffraction methods and molecular simulations are key techniques to probe the organization of the smectite structure at a similar molecular length scale. The combination of both of these experimental and numerical methods represents a complementary approach to reveal the structural heterogeneity of real samples, design and model a wide range of smectite structures, and validate the simulation results through comparison with experimental data.
This paper first revisits establishment of the original interlayer model as developed in the 1930s for the organization of water and ions in the smectite structure using X-ray diffraction (XRD) techniques. Then, based on a simplified approach, key theoretical tools are provided to calculate XRD pattern 00l reflections for a periodic smectite structure with a wide range of interlayer compositions and organizations using conventional spreadsheet software. In addition to educational purposes, this theoretical description is used to describe the principal parameters governing the positions and intensities of experimental XRD 00l reflections. This calculation toolbox is also used to determine better the layer-to-layer distances considered in molecular simulations and to validate these simulations through a detailed collation procedure using experimental data.
Recent examples of the application of such a procedure to collate experimental diffraction data and molecular simulations are presented for the specific case of deciphering the molecular organization of interlayer water and cations in the different smectite hydrates (mono-, bi-, and tri-hydrated layers). The extension of this approach to the interlayer refinement of organo-clays is also detailed, and perspectives regarding the characterization of other lamellar compounds are discussed.
The formation of siderite and magnetite by Fe(III)-reducing bacteria may play an important role in C and Fe geochemistry in subsurface and ocean sediments. The objective of this study was to identify environmental factors that control the formation of siderite (FeCO3) and magnetite (Fe3O4) by Fe(III)-reducing bacteria. Psychrotolerant (<20°C), mesophilic (20–35°C) and thermophilic (>45°C) Fe(III)-reducing bacteria were used to examine the reduction of a poorly crystalline iron oxide, akaganeite (β-FeOOH), without a soluble electron shuttle, anthraquinone disulfuonate (AQDS), in the presence of N2, N2-CO2(80:20, V:V), H2 and H2-CO2 (80:20, V:V) headspace gases as well as in -buffered medium (30–210 mM) under a N2 atmosphere. Iron biomineralization was also examined under different growth conditions such as salinity, pH, incubation time, incubation temperature and electron donors. Magnetite formation was dominant under a N2 and a H2 atmosphere. Siderite formation was dominant under a H2-CO2 atmosphere. A mixture of magnetite and siderite was formed in the presence of a N2-CO2 headspace. Akaganeite was reduced and transformed to siderite and magnetite in a -buffered medium (>120 mM) with lactate as an electron donor in the presence of a N2 atmosphere. Biogeochemical and environmental factors controlling the phases of the secondary mineral suite include medium pH, salinity, electron donors, atmospheric composition and incubation time. These results indicate that microbial Fe(III) reduction may play an important role in Fe and C biogeochemistry as well as C sequestration in natural environments.
Nontronite NAu-1 was exposed to moderate temperature and pressure conditions (250 and 300°C at 100 MPa pressure) in KCl brine to simulate burial diagenetic systems over accelerated time periods appropriate for laboratory experiments. Powder X-ray diffraction and transmission electron microscopy analysis of the coexisting mixed-layer and discrete 10 Å clay reaction products, and inductively coupled plasma-mass spectrometry analysis of the remaining fluids, indicated that the clay retained octahedral Fe and was identified as Fe-celadonite. The release of Fe from smectite during burial diagenesis has been hypothesized as a mechanism for magnetite authigenesis. High Al activity relative to Fe may be critical to the formation of an aluminous illite and any associated authigenic magnetite.
Humic acid (HA) can cause environmental pollution, due to which, its removal from aqueous solutions has become an increasingly important issue. Although bentonite has an affinity for HA, the adsorption capacity of raw bentonite is still poor. As a commonly used organic modifier, 3-aminopropyltriethoxyorganosilane (APTES) exhibits excellent flocculation capability for HA. Therefore, the objective of the present study was to investigate the effectiveness of the addition of 3-aminopropyltriethoxyorganosilane (APTES) to raw bentonite to increase the adsorption of HA from aqueous solution. The experimental results showed that, when the solid-to-liquid ratio was 1:1, the amino-modified bentonite exhibited the highest adsorption capacity (qmax = 272.23 mg g-1). The adsorption affinity of amino-modified bentonite was mainly determined by the number of amino groups loaded onto its surface. The adsorption of HA on amino-modified bentonite occurred through electrostatic interactions and hydrogen bonding. These findings demonstrate the excellent potential of amino-modified bentonite in effectively remediating HA pollution.
From leaching experiments with metallic uranium-aluminum research reactor fuel elements in repository-relevant MgCl2-rich salt brines, a Mg-Al layered double hydroxide (LDH) with chloride as the interlayer anion was identified as a crystalline secondary phase component. The incorporation behavior of europium into the structure of the Mg-Al-Cl LDH was investigated. Synthesis via co-precipitation was performed. The Mg-Al-Eu-Cl LDH obtained was treated with a concentrated ammonium carbonate solution. No release of Eu was detected; hence the molar stoichiometry of the LDH remained stable with respect to Mg, Al and Eu. This chemical behavior might be the first indication of the incorporation of Eu.
The material was further examined by powder X-ray diffraction. Structural parameters were obtained from comparisons of simulated and experimental diffraction patterns of a ${\rm{CO}}_3^{2 - }$-exchanged Mg-Al-Eu LDH and a Mg-Al LDH. The two materials showed different behaviors according to stacking order and lattice parameters. This is an indirect indication of the incorporation of Eu.
The properties of Si-associated goethite from sediments in the Atlantis II and Thetis Deeps in the Red Sea have been investigated in order to determine the effect of Si on the mineral. Two types of morphologies dominate in most samples: multi-domain crystallites, probably due to elevated Na concentration in the initial brine from which the mineral had crystallized, and mono-domain, acicular crystals. Goethite crystals with elevated Si/Fe elemental ratios are usually smaller and poorly crystalline, exhibiting numerous crystal defects, whereas larger crystals with higher crystallinity have lower Si/Fe elemental ratios. The higher Si/Fe ratios in Atlantis II Deep goethites and the lower ratio in Thetis Deep goethites probably reflect the levels of Si concentration in the hydrothermal fluids from which goethite precipitated. At relatively low Si/Fe ratios, the major effect of Si is to retard growth of the crystallites, but only a small number of defects are formed. At high Si/Fe ratios the defect concentration affects the properties of the crystals, as observed with Mössbauer spectroscopy. The Si association with goethite affects crystallinity and crystal size as indicated by X-ray diffraction, infrared spectroscopy and high-resolution transmission electron microscopy.