To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As one of the strongest inorganic oxidizers in natural environments, manganese oxides participate in the oxidation processes of dissolved sulfides, affecting their migration, transformation, and toxicity. The amount of and sites for Mn(III) influence significantly the oxidation activity of Mn(IV) oxides. As an easily formed Mn oxide in supergene environments, manganite consists of Mn(III)O6 octahedra; further study is needed of the interaction processes of manganite and dissolved sulfide. In the present study, the interaction mechanisms of dissolved sulfide and manganite were studied systematically. The influences of pH, temperature, and oxygen atmosphere were also investigated in detail. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the crystal structures, compositions, and micromorphologies of manganite and the intermediate products. The sulfide species were identified by visible spectroscopy, high-performance liquid chromatography, UV-visible (UV-Vis) spectroscopy, and ion chromatography during the reaction process. The results indicated that in a nitrogen atmosphere, elemental sulfur was formed as the main oxidation product of dissolved sulfide by manganite at the initial stage, and polysulfide ions were observed as the intermediates. Elemental sulfur was further oxidized slowly to S2O32−. The initial oxidation rate of dissolved sulfide by manganite increased with temperature from 20 to 40°C. The reaction rate increased at first and then decreased as the pH changed from 4.0 to 12.0, and the greatest oxidation rate was achieved at pH 8.0. In the presence of oxygen, S2O32− was the main product. The oxidation rate of dissolved sulfide decreased, and manganite exhibited significant catalytic activity and stability with respect to the oxidation of dissolved sulfide in the oxygenated aqueous systems. These findings are of fundamental significance in understanding the interaction and transformation of dissolved sulfide and manganese oxides in nature.
In order to better understand the provenance of the sediments and environmental change associated with the Permian-Triassic (P/T) biotic crisis, a comparative clay mineralogical study of the Permian-Triassic boundary (PTB) sediments between the Meishan section (the Global Stratotype Section and Point of the PTB) and the Xiakou section, southern China, was undertaken using X-ray diffraction and differential scanning calorimetry (DSC). The results showed that clay minerals of the packstone bed 24e, in which the preludial mass extinction occurred at Meishan, consist of 56% mixed-layer illite-smectite (I-S), 39% illite, and 5% kaolinite. A dehydroxylation effect was measured at 652°C, indicating that I-S and illite of this bed contain mainly cis-vacant (cv) layers related to volcanic origin. The dehydroxylation event correlates with bed P257 at Xiakou. The white clay bed 25 also corresponding to the main extinction event at Meishan contains 95% I-S and 5% kaolinite, with a strong endothermic effect at 676°C and a weaker one at 514°C in the DSC curve. These results are attributed to dehydroxylation of cv layers in I-S clays, suggesting that I-S in the white clay bed was derived from marine alteration of volcanic ash, in agreement with the conodont-correlated clay (P258) at Xiakou. (Conodonts are tooth-like microfossils and are usually used as an indicator of age in PTB stratigraphy.) Increases in chlorite and illite contents in the black clays (bed 26) at Meishan and the conodont-correlated black clay layer (P259b) at Xiakou probably indicate stronger erosional processes under cooler and more arid conditions. Volcanic materials found in a bed which marked the prelude to the main episode of mass extinction reinforce the temporal link between volcanism and the mass extinction.
Bentonites are candidate materials for encapsulation of radioactive waste. The cation exchange capacity (CEC) has proved to be one of the most sensitive parameters for detecting changes of mineral properties such as swelling capacity and illitization in alteration experiments. Whether measured differences in CEC values of bentonite buffer samples before and after an experiment are (1) actual differences caused by clay structural changes such as illitization or (2) simply data scatter due to the different methods used by international research teams is an open question. The aim of this study was to measure the CEC of clay samples in five different laboratories using the same method and to evaluate the precision of the values measured. The Cu-trien method and four reference materials of the Alternative Buffer Material (ABM) test project in Äspö, Sweden, were chosen for this interlaboratory study. The precision of the Cu-trien method, which uses visible spectroscopy, was very good with a standard deviation of ±0.7–2.1 meq/100 g for CECs that ranged from 11 to 87 meq/100 g. For the same CEC range, analysis of Cu-trien index cations using inductively coupled plasma (mass spectrometry) and atomic absorption spectroscopy were less precise with a standard deviation of ±2.8–3.9 meq/100 g. Based on the measured precision, greater measured differences in Cu-trien CEC and exchangeable cation values of bentonite buffer samples, before and after an experiment, might be actual differences. Great care must be taken when interpreting measured CEC differences, and analytical characterization of any structural changes may be needed. Compared with results from the ‘International Soil-Analytical Exchange’ (iSE) program for soils, most absolute concentrations were much larger for the clays studied; however, for the two parameters exchangeable Ca2+ and CEC the range was similar to the iSE ring test and, most importantly, the precision was comparable. Future studies should discuss the accuracy of CEC and exchangeable cation values and compare them to alternative CEC methods in which care is taken to prevent dissolution of soluble minerals, such as calcite and gypsum.
Sorption of U(VI) on clay and related minerals has been inspected experimentally and computationally because of its central role in safety considerations of geological repositories for highly radioactive waste. Np(V), which also has long half-life isotopes, has received considerably less attention. The purpose of the present study was to investigate computationally the adsorption of Np(V) on a clay-mineral surface and to compare it to adsorption of U(VI). As a sample case study, adsorption of Np(V) at the (110) edge surface of the common clay mineral montmorillonite was modeled. The density functional approach and periodic supercell models were applied. Mono- and bidentate adsorption complexes with coordination numbers 4 and 5 were inspected and compared to corresponding U(VI) species. While U(VI) prefers bidentate adsorption complexes with varying coordination numbers, Np(V) is more stable when monodentate-coordinated with a coordination number of four. In line with its smaller hydrolysis constant in aqueous solution, Np(V) shows a lower tendency to form monohydroxides on the mineral surface compared to U(VI). As no experimental geometry parameters are available for Np(V) adsorbed on montmorillonite, the results were compared tentatively to EXAFS data for adsorption at kaolinite and good agreement for the geometry changes due to adsorption was found for the more preferred adsorbed species.
This essay examines the efforts of Upton Sinclair and Ernest Poole to connect their respective novels The Jungle and The Harbor to the nineteenth-century sentimental literary tradition, as well as their leftist allies’ reception of those efforts. Sinclair consistently presented The Jungle as a second Uncle Tom’s Cabin, capable of moving readers to agitate on behalf of working-class immigrants, while Poole engaged reflexively with the tropes and traditions of sentimentalism in order to model for his readers how they should respond to The Harbor. Although both novels became bestsellers and influenced later writers of proletarian fiction, early leftist critics dismissed Sinclair and Poole’s sentimentalism as aesthetically simplistic and politically naïve. This essay turns instead to a slightly later contemporary of those critics, Antonio Gramsci, whose prison writings argue for the revolutionary potential of sentimentalism. Reading The Jungle and The Harbor through the lens of Gramsci’s analysis of organic intellectuals and the cathartic power of popular literary forms, this essay contends, resolves many of the problems those early critics identified in the novels.
The conversion of CO2 into carbon feedstock via CO2 hydrogenation to methane requires a stable catalyst for reaction at high temperatures. Zeolite NaY (abbreviated hereafter as NaY) synthesized from naturally occurring kaolin provides a stable support for Ni nanoparticles. Kaolin can be further dealuminated using sulfuric acid to reduce the Si/Al ratio, but the presence of the remaining sulfur is detrimental to the formation of NaY. The objective of the present study was to synthesize NaY from dealuminated metakaolin, using a method that minimizes the detrimental effects of sulfur, and to investigate the effect of its activity on CO2 methanation. Kaolin from Bangka Belitung, Indonesia, was calcined at 720°C for 4 h to form metakaolin (M) and subsequently treated with sulfuric acid to form dealuminated metakaolin (DM). Excess sulfur was removed by washing with deionized water at 80°C. Zeolite NaY was then synthesized from the M and DM via a hydrothermal method; the relationship between morphology, structural properties, and the catalytic activity of NaY was determined for CO2 methanation at 200–500°C. The presence of excess sulfur following dealumination of metakaolin produced NaY with small surface area and porosity. After Ni impregnation, the synthesized NaY exhibited significant catalytic activity and stability for the reaction at 250–500°C. Analysis by scanning electron microscopy and high-resolution transmission electron microscopy showed the formation of well-defined octahedral structures and large surface areas of ~500 m2/g when NaY was synthesized using DM. Catalytic activity indicated significant conversion of CO2 (67%) and CH4 selectivity (94%) of Ni/NaY from DM in contrast to only 47% of CO2 conversion with 77% of CH4 selectivity for Ni/NaY synthesized from M. Dealuminated metakaolin also produced robust NaY, which indicated no deactivation at 500°C. The combination of well-defined crystallite structures, large surface area, and small Al contents in NaY synthesized from DM helped in CO2 conversion and CH4 selectivity for the reaction at 200–500°C.
A comparative crystallochemical study was performed on natural and synthetic hydrotalcite-like compounds with similar compositions. The nature of the brucite-like sheet stacking was addressed by means of powder X-ray diffraction. From the resulting electron diffraction patterns it was possible to establish the order-disorder of the cations in the brucite-like sheet. The results show that a natural sample from Snarum is an intergrowth of hydrotalcite (3R1 polytype) and manasseite (2H1 polytype) at a ratio of 77:23 (wt.%). An aluminian serpentine is associated with the hydrotalcite and manasseite minerals. The structure of a synthetic sample, Mg:Al = 2:1, was determined as space group . For a few crystals in this sample, the octahedral cation distribution is compatible with the observed supercell (a = a′ √3). A second synthetic sample showed the presence of stacking faults and was described as a random layer sequence of two polytypes (3R and 2H).
The Manley O. Hudson Medal is the highest honor bestowed by the Society, reserved for a distinguished person of American or other nationality for outstanding contributions to scholarship and achievement in international law. I was not on the Awards Committee but, if I had been, I would have chosen you. I am honored that you chose me as your interlocutor.
Layered double hydroxides (LDH) are extremely important materials for industrial processes and in the environment, and their physical-chemical behavior depends in large part on their hydration state, but the characterization of these hydration effects on their properties are incomplete. The present study was designed to explore the interpolytype transitions induced by variation in the ambient humidity among LDHs. The cooperative behavior of intercalated water molecules resulted in a sudden, single-step, reversible dehydration of the [Zn-Cr-SO4] LDH. The [Zn-Al-SO4] LDH provided an interesting contrast with (1) the coexistence of the end members of the hydration cycle over the 40-20% relative humidity range during the dehydration cycle, and (2) a random interstratified intermediate in the hydration cycle. These observations showed that the [Zn-Al-SO4] LDH offered sites having a range of hydration enthalpies, whereby, at critical levels of hydration (20–40%), the non-uniform swelling of the structure resulted in an interstratified phase. The variation in domain size during reversible hydration was also responsible for the differences observed in the hydration vs. the dehydration pathways. This behavior was attributed to the distortion in the array of hydroxyl ions which departs from hexagonal symmetry on account of cation ordering as shown by structure refinement by the Rietveld method. This distortion was much less in the [Zn-Cr-SO4] LDH, whereby the nearly hexagonal array of hydroxyl ions offered sites of uniform hydration enthalpy for the intercalated water molecules. In this case, all the water molecules experienced the same force of attraction and dehydrated reversibly in a single step. The changes in basal spacing were also accompanied by interpolytype transitions, involving the rigid translations of the metal hydroxide layers relative to one another.
The passive film of reinforcing steel in marine concrete is damaged by the infiltration of chloride and sulfate ions. Layered double hydroxide (LDH) can adsorb anions and release interlayer ions to form passive films due to its ion exchange property. A Mg-Al-NO3 layered double hydroxide/montmorillonite (LDH/Mnt) composite inhibitor was prepared by layer-by-layer self-assembly (LBL) of LDH and Mnt. The structure and morphology of the LDH/Mnt composites were characterized by X-ray diffraction (XRD), laser Raman spectroscopy, N2-adsorption/desorption measurements, and transmission electron microscopy (TEM). The LDH/Mnt composites, as inhibitors of chloride ions and sulfate ions, exhibited high slow-release efficiency. The mass ratio of LDH and Mnt affected the curing capacity of the synthesized composites, and the optimum mass ratio was LDH/Mnt = 1:1 for which slow-release efficiency reached 94.16%.
Accurate clay mineral identification is key to understanding past aqueous activity on Mars, but martian phyllosilicates are old (>3.5 Ga) and have been heavily bombarded by meteoroid impacts. Meteoroid impacts can alter clay mineral structures and spectral signatures, making accurate remote sensing identifications challenging. This paper uses nuclear magnetic resonance (NMR) spectroscopy to examine the short-range structural deformation induced in clay mineral samples of known composition by artificial impacts and calcination. Structural changes are then related to changes in the visible-near infrared (VNIR) and mid-infrared (MIR) spectra of these clay mineral samples. The susceptibility of phyllosilicates to structural deformation after experimental impacts varies by structure. Experimental results showed that trioctahedral, Mg(II)-rich saponite was structurally resilient up to peak pressures of 39.8 GPa and its unchanged post-impact spectra reflected this. Experimental data on kaolinite showed that this Al(III)-rich, dioctahedral phyllosilicate was susceptible to structural alteration at peak pressures ⩾ 25.1 GPa. This result is similar to previously reported experimental results on the Fe(III)-rich dioctahedral smectite nontronite, suggesting that dioctahedral phyllosilicates may be more susceptible to shock-induced structural deformation than trioctahedral phyllosilicates. The octahedral vacancies present in dioctahedral phyllosilicates may drive this increased susceptibility to deformation relative to trioctahedral phyllosilicates with fully occupied octahedral sheets. Thermal alteration accompanies shock in meteoroid impacts, but shock differs from thermal alteration. NMR spectroscopy showed that structural deformation in thermally altered phyllosilicates differs from that found in shocked phyllosilicates. Similar to shock, dioctahedral phyllosilicates are also more susceptible to thermal alteration. This differential susceptibility to impact-alteration may help explain generic smectite identifications from heavily bombarded terrains on Mars.
The first occurrence of Ni-rich stevensite found in the ophiolite complex of Othrys, Central Greece is described. The stevensite, which develops in cracks in a host serpentinite, formed at the expense of serpentine. Two varieties of stevensite have been described: a Mg-rich, Ni-poorer variety with 0.4–1.2 octahedral Ni atoms per half formula unit (p.h.f.u.) and a Ni-rich variety with >2 Ni atoms p.h.f.u. The layer charge in both varieties is −0.24 p.h.f.u.. Stevensite layers are completely separated when dispersed in dilute polyvinylpyrrolidone (PVP) solutions and begin to convert to talc after heating at 250°C for 90 min. Total conversion to talc is observed at 550°C. Formation of Ni-rich stevensite took place at ambient temperature during supergene processes. The scarcity of Ni-rich stevensite occurrences in nature is attributed to the metastability of smectite and to the analytical procedures used in previous studies. Stevensite is considered a phase containing domains with variable numbers of octahedral vacancies. A new experimental protocol is proposed for the determination of Ni-rich stevensite, based on a combination of XRD after solvation with various organic liquids and subsequent heating at 750°C.
In Homer's The Odyssey, Odysseus and his men are on their way home to Ithaca when they land on a remote island inhabited by lotus-eaters. The locals share their indolent-making lotus plants with the Greeks, such that the troops’ homeward journey is disrupted and they find themselves in a state of limbo. Identities, both individual and communal, become entangled and blurred. Beat Furrer takes these sorts of uncertainties of self as inspiration in his Lotófagos (2007) – that is, Lotus-eaters – scored for soprano and double bass, which sets José Ángel Valente's poem of the same name. Drawing on Gilles Deleuze's conception of bodies, this article argues that the identity of an elusive but persistent collective subject in Valente's text can be found within the difference between the two performers’ bodies in Furrer's setting. The pair's movements weave in and out of each other, moving through spectres of each other's material, fleetingly suggesting cohesion through tension before jettisoning this for what contextually appears as relief. As such, the series of surreptitious vignettes presents a ‘conatus’ of the piece defined by tension, emulation and transience; Furrer's Lotófagos creates space for Valente's mysterious subject to be presented as the immanence of forces between two performing bodies.
Quantification of mineral assemblages in near-surface Earth materials is a challenge because of the often abundant and highly variable crystalline and chemical nature of discrete clay minerals. Further adding to this challenge is the occurrence of mixed-layer clay minerals, which is complicated because of the numerous possible combinations of clay layer types, as defined by their relative proportions and the ordering schemes. The problem of ensuring accurate quantification is important to understanding landscape evolution because mineral abundances have a large influence on ecosystem function. X-ray diffraction analysis of the variable cation-saturated clay fraction in soil and regolith from the Calhoun Critical Zone observatory near Clinton, South Carolina, USA, was coupled with modeling using NEWMOD2 to show that mixed-layer clays are often dominant components in the mineral assemblages. Deep samples in the profile (>6.5 m) contain mixed-layer kaolinite/smectite, kaolinite/illite-like, kaolinite-vermiculite, illite-like/biotite, and illite-like/vermiculite species (with ‘illite-like’ defined herein as Fe-oxidized 2:1 layer structure with a negative layer charge of ~0.75 per unit formula, i.e. weathered biotite). The 2:1 layers in the mixed-layer structures are proposed to serve as exchange sites for K+, which is known to cycle seasonally between plant biomass and subsurface weathering horizons. Forested landscapes have a greater number of 2:1 layer types than cultivated landscapes. Of two nearby cultivated sites, the one higher in landscape position has fewer 2:1 layer types. Bulk potassium concentrations for the forested and two cultivated sites show the greatest abundances in the surface forested site and lowest abundance in the surface upland cultivated site. These observations suggest that landscape use and landscape position are factors controlling the mixed-layer mineral assemblages in Kanhapludults typical of the S.E. United States Piedmont. These mixed-layer clays are key components of the proposed mechanism for K+ uplift concepts, whereby subsurface cation storage may occur in the interlayer sites (with increased negative 2:1 layer charge) during wetter reduced conditions of the winter season and as biomass decay releases cation nutrients. Cation release from the mixed-layer clays (by decreased 2:1 layer charge) occurs under drier oxidized conditions during the growing seasons as biota utilize cation nutrients. The types and abundances of mixed layers also reflect long-term geologic factors including dissolution/alteration of primary feldspar and biotite and the subsequent transformation and dissolution/precipitation reactions that operate within the soil horizons. Thus, the resulting mixed-layer clay mineral assemblages are often complex and heterogeneous at every depth within a profile and across landscapes. X-ray diffraction (XRD) assessment, using multiple cation saturation state and modeling, is essential for quantifying the clay mineral assemblage and pools for cation nutrients, such as potassium, in the critical zone.
Microwave irradiation as a means for heating bentonites during acid activation has been investigated in the past but it has never been optimized for industrial applications. The purpose of this study was to apply a factorial 23 experimental design to a Serbian bentonite in order to determine the influence of microwave heating on the acid-activation process. The effect of acid activation under microwave irradiation on the textural and structural properties of bentonite was studied as a model reaction. A mathematical, second-order response surface model (RSM) was developed with a central composite design that incorporated the relationships among various process parameters (time, acid concentration, and microwave heating power) and the selected process response of specific surface area of the bentonite. The ranges of values for the process parameters chosen were: time, 5–21 min; acid concentration, 2–7 M; and microwave heating power, 63–172 W. The effect of individual variables and their interaction effects on the textural and structural properties of the bentonite were determined. Statistical analysis showed that the duration of microwave irradiation was less significant than the other two factors. The model showed that increasing the time and acid concentration improved the textural properties of bentonites, resulting in increased specific surface area. This model is useful for setting an optimum value of the activation parameters for achieving the maximum specific surface area. An optimum specific surface area of 142 m2g−1 was achieved with an acid concentration of 5.2 M, activation time of 7.4 min, and microwave power of 117 W.
Compacted Na-bentonite clay barriers, widely used in the isolation of solid-waste landfills and other contaminated sites, have been proposed for a similar use in the disposal of high-level radioactive waste. Molecular diffusion through the pore space in these barriers plays a key role in their performance, thus motivating recent measurements of the apparent diffusion coefficient tensor of water tracers in compacted, water-saturated Na-bentonites. In the present study, we introduce a conceptual model in which the pore space of water-saturated bentonite is divided into ‘macropore’ and ‘interlayer nanopore’ compartments. With this model we determine quantitatively the relative contributions of pore-network geometry (expressed as a geometric factor) and of the diffusive behavior of water molecules near montmorillonite basal surfaces (expressed as a constrictivity factor) to the apparent diffusion coefficient tensor. Our model predicts, in agreement with experiment, that the mean principal value of the apparent diffusion coefficient tensor follows a single relationship when plotted against the partial montmorillonite dry density (mass of montmorillonite per combined volume of montmorillonite and pore space). Using a single fitted parameter, the mean principal geometric factor, our model successfully describes this relationship for a broad range of bentonite-water systems, from dilute gel to highly-compacted bentonite with 80% of its pore water in interlayer nanopores.
Many types of oxidative pollutants are dangerous chemicals and may pose a health risk, but an inexpensive and effective method for mitigating those risks would offer significant advantages. The objective of this study was, therefore, to investigate the potential for Fe-pillared montmorillonite to fill that gap. Surface mediated reduction reactions by ferrous species often play an important role in governing the transport, transformation, and fate of hazardous oxidative contaminants. Compared to the untreated montmorillonite (Mnt), the synthetic polyhydroxyl-Fe pillared montmorillonite (Fe-Mnt) was found to be somewhat similar to goethite in promoting the ability of specifically adsorbed Fe(II) to reductively transform 2-nitrophenol (2-NP). The 2-NP was efficiently removed within 30 min from solutions at the optimum neutral pH in a mixed reduction system of Fe(II)/Fe-Mnt under an anoxic atmosphere. This demonstrated that the specifically adsorbed Fe(II) of Fe-Mnt can enhance 2-NP reduction. The highly enhanced 2-NP reduction by Fe(II) through Fe-Mnt surface catalysis can, therefore, be ascribed to clearly increased amounts of an adsorbed Fe(II) species surface complex, which gave rise to enhanced Fe(II) reductive activity that enabled the rapid reduction of 2-NP. The reduction processes produced a faster transformation of 2-NP in a Fe-Mnt suspension than in a Mnt suspension. The transformation kinetics were described using pseudo-first-order rate equations. Moreover, in addition to the effects of mineral surface properties, the interactions were affected by the aqueous chemistry, and the removal rates of 2-NP were increased at pHs of 6.0–7.3. In the present study, the structure and surface reactivity of Fe-Mnt was characterized in depth. The polyhydroxyl-Fe added to Mnt and the pH were determined to be the two key controlling factors to mediate the reductive transformation of 2-NP in the presence of Fe-Mnt in comparison to goethite and Mnt. Finally, the catalysis mechanism responsible for the enhanced 2-NP reduction by Fe(II) was elucidated using cyclic voltammetry.