To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Secondary Fe(III) oxyhydroxides play a key role in controlling the mobility and bioavailability of trace metals in acidic, sulfate-rich soils, such as mining and smelter sites. Schwertmannite, jarosite, goethite, and ferrihydrite are the most common mineral phases identified in such soils. A good understanding of the precipitation and transformation of these minerals in soils is very important for predicting the mobility and long-term stability of trace metals associated with them. In the present study, bulk powder X-ray diffraction (XRD), scanning electron microscopy (SEM), synchrotron based micro- X-ray diffraction (µ-XRD), and micro X-ray fluorescence (µ-SXRF) spectroscopy were used to investigate precipitates fromthe surface horizon of an organic soil (Histosol) at a site that once contained a lead smelter. Soil samples were collected from 0 to ≈10 cm depth during both wet and dry seasons. Goethite and akaganeite were identified as the major mineral phases in this soil. Schwertmannite and jarosite were also occasionally identified, particularly in the soil samples from dry periods. The peaks in the akaganeite XRD pattern were significantly broadened and the relative intensities of some major peaks were distinctly different compared with the diffraction pattern of synthetic akaganeite, possibly due to the effects of pH and the incorporation of sulfate. The SEM and µ-XRD data support the hypothesis that the goethite in the precipitates is not the product of direct precipitation froms olution but the transformation of previously precipitated schwertmannite or akaganeite.
The structure of dioctahedral true micas such as muscovite and celadonitic muscovite (2M1 polytype, space group C2/c) is mostly affected by variations of the octahedral Al (VIAl) content. Crystals with greater Mg, Fe substitutions (i.e. celadonitic muscovite) reduce the dimensional difference between the larger trans-oriented M1 site and smaller cis-oriented M2 octahedral site. The octahedral anionic position O4 is displaced from the center of the hexagon, defined by 031 and 032 oxygen atoms (i.e. ‘octahedral hexagon’), both on and off the (001) plane. The distance between interlayer cation A and O4 is smaller in more substituted species, thus providing different orientations of the O4−H vector, as a function of VIAl. Octahedral distances (<M2−O3> and <M2−O4> are expressed as a function of cell parameters and VIA1 content, thus allowing an approximate estimate of site dimensions. These approximations are useful when a detailed structural refinement is not available. In celadonitic muscovite, the octahedral hexagon mean edge (<O31−O32>Hex) is not significantly affected by VIA1 content. The VIA1 increase produces both a decrease in cell lateral dimensions and a distorted ‘octahedral hexagon’. The decrease in a and b is consistent with a decrease of <O31−O32>Hex, whereas the distortion of the’ octahedral hexagon’ is consistent with an increase of (<031–032>Hex), because an irregular hexagon produces a longer mean edge than a regular hexagon of equal area.
The tetrahedral mean basal edge (VI<O−O>bassal) is reduced as celadonitic substitution progresses. The tetrahedral rotation angle, α was thus found to increase from celadonite to muscovite. However, in muscovite with VIAl content between 1.8 and 2.0 atoms per formula unit (a.p.f.u.), α approaches a saturation value, thus showing a proportional increase of tetrahedral and octahedral sheet lateral dimensions. Furthermore, α variation allows a coarse approximation of the threshold VIAl content, below which celadonitic substitution may not progress.
Bentonites are commonly used as chemical containment barriers to minimize liquid flow and contaminant transport. However, chemicals can adversely affect bentonite performance to the extent that modified bentonites have been developed to improve chemical resistance relative to traditional (unmodified) bentonites. The present study focused on the diffusion of potassium chloride (KCl) through a bentonite-polymer composite, or BPC, that was known to behave as a semipermeable membrane. Specifically, the effective diffusion coefficients, D*, for chloride (Cl−) and potassium (K+) were measured and correlated with previously measured membrane efficiency coefficients, ω, for the BPC. The values of D* at steady-state for chloride (\$\end{document}) and potassium (\$\end{document}) decreased as the ω values increased. The decrease in \$\end{document} and \$\end{document} was approximately a linear function of (1 − ω), which is consistent with previous research performed on unmodified Na-bentonite contained within a geosynthetic clay liner (GCL). In contrast to the previous GCL tests, however, \$\end{document} values for the BPC generally were greater than the \$\end{document} values, and the differences between \$\end{document} and \$\end{document} decreased as KCl concentration increased. The apparent discrepancy between \$\end{document} and \$\end{document} is consistent with excess sodium (Na+) in the BPC prior to testing and the requirement for electroneutrality during testing. Also, despite an apparent linear trend in diffusive mass flux for K+, lack of agreement between the ratio of the diffusive mass flux of K+ relative to that for Cl− as required on the basis of electroneutrality at steady state suggested that steadystate diffusive mass flux for K+ had probably not been achieved due to continual K+-for-Na+ cation exchange. Nonetheless, the excess Na+ and bentonite modification did not affect the fundamental correlation between D* and ω, which requires that D* approaches zero as ω approaches unity (D* → 0 as ω → 1).
NEWMOD was developed by R.C. Reynolds, Jr., for the study of two-component interstratifications of clay minerals. One-dimensional X-ray diffraction (XRD) profiles of an interstratified system of two clay minerals can be simulated using NEWMOD, given a set of parameters that describes instrumental factors, the chemical composition of the system (e.g. the concentration of Fe and interlayer cations), and structural parameters (e.g. proportions of the two components, the nature of ordering, and crystallite size distribution). NEWMOD has served as the standard method for quantitatively evaluating interstratified clay minerals for >20 y. However, the efficiency and accuracy of quantitative analysis using NEWMOD have been limited by the graphical user interface (GUI), by the lack of quantitative measures of the goodness-of-fit between the experimental and simulated XRD patterns, and by inaccuracies in some structure models used in NEWMOD. To overcome these difficulties, NEWMOD+ was coded in Visual C++ using the NEWMOD architecture, incorporating recent progress in the structures of clay minerals into a more user-friendly GUI, greatly facilitating efficient and accurate fitting. Quantitative fitting parameters (unweighted R-factor, Rp, weighted R-factor, Rwp, expected R-factor, Rexp, and chisquare, χ2) are included, along with numerous other features such as a powerful series generator, which greatly simplifies the generation of multiple simulations and makes NEWMOD+ particularly valuable for teaching.
With fossil-fuel consumption at an all-time high, air pollution is becoming one of the most prominent problems of the 21st century. In addition to their devastating effects on the environment, sulfur-based pollutants are problematic for infrastructure by undermining the structural stability of various oxide-based surfaces found in clays and clay minerals. Calcite (CaCO3) and alumina (α-Al2O3) are two such mineral oxides with surfaces that are potentially susceptible to damage by sulfur-based adsorbates. Their surface interactions with a wide range of sulfur-based pollutants, however, have yet to be studied adequately at the atomistic level. This problem can be addressed by utilizing density functional theory (DFT) to provide molecular-level insights into the adsorption effects of H2S, SO2, SO3, H2SO3, and H2SO4 molecules on calcite and alumina surfaces. DFT can be used to compare different types of adsorption events and their corresponding changes in the geometry and coordination of the adsorbates, as well as delineate any possible mineral-surface reconstructions. The hypothesis driving this comparative study was that the mineral-oxide surface structure will dictate the surface adsorption reactivity, i.e. the flat carbonate unit in calcite will behave differently from the Al–O octahedra in alumina under both vacuum and hydrated surface conditions. The set of sulfur-based adsorbates tested here exhibited a wide range of interactions with alumina and fewer with calcite surfaces. Events such as hydrogen bonding, sulfate formation, atom abstraction, and the formation of surface water groups were more prevalent in alumina than calcite and were found to be dependent on the surface termination. The results of this work will prove instrumental in the design of clay and mineral-based materials resilient to sulfur-based pollutants for use in construction and infrastructure such as smart building coatings and antifouling desalination membranes, as DFT methods can garner the atomistic insights into mineral-surface reactivity necessary to unlock these transformative technologies.
The assignment of the 29Si CP/MAS-NMR spectrum of naturally-occurring sepiolite clay was re-examined using 29Si COSY and 1H-29Si HETCOR pulse sequences. Each of the three main resonances at −92.1, −94.6 and −98.4 ppm has been attributed to one of the three pairs of equivalent Si nuclei in the basal plane, and the resonance at −85 ppm to Q2(Si-OH) Si nuclei. On the basis of the COSY experiment, the resonance at −92.1 ppm is unambiguously assigned to the intermediate, near-edge Si sites. The HETCOR experiment revealed that the resonance at −94.6 ppm cross-polarizes almost entirely from the Mg-OH protons, and therefore is assigned to the central Si position. The remaining resonance at −98.4 ppm correlates strongly to the protons of the structural water molecules and therefore is assigned to the edge Si sites. Nearly complete rehydration was achieved at room temperature by exposing sepiolite samples that had been partially dehydrated at 120°C to water vapor or to D2O vapor. The rehydration results support the 29Si NMR peak assignments that were made on the basis of the COSY and HETCOR experiments.
The 29Si CP/MAS-NMR spectrum corresponding to the folded sepiolite structure in which approximately one half of the structural water has been removed by heating to 350°C is reported for the first time. The chemical shift values and relative intensities are significantly different compared to the resonances that are observed in the corresponding spectrum of the true sepiolite anhydride. These observations support the earlier claim that sepiolite heated to ∼350°C exists as a distinct phase to be differentiated from that of the completely dehydrated state.
In cases where the provenance of raw materials used in the manufacture of local archeological ceramics is of interest, a detailed study of thermal transformations of minerals may be useful. The purpose of this study was to measure mineralogical transformations of different types of clays obtained during experimental firing runs, carried out at different temperatures, with the main goal of establishing Algarve reference groups based on the composition of raw material and high-temperature mineralogy, which may be compared with ceramics in studies of provenance. Eleven samples of clay-rich raw materials from the Algarve Basin (southern Portugal) were fired to temperatures ranging from 300 to 1100°C in increments of 100°C under oxidizing conditions. These were chosen to have variable chemical and mineralogical compositions, representing the main compositional range of the clay deposits from the region. Mineralogical and geochemical characterizations of the original clays were carried out by X-ray diffraction (XRD) and X-ray fluorescence (XRF), respectively. Mineral transformations on the fired products were also studied by XRD.
Three groups of clays were distinguished according to the type of neoformed high-temperature minerals: (1) non-calcareous clays; (2) clays containing calcite as the only carbonate; and (3) clays with dolomite or dolomite + calcite. Firing of non-calcareous clays produced mullite at 1100–1200°C. Gehlenite and wollastonite formed by firing calcite-rich clays above 900°C, accompanied by anorthite or larnite in samples with small or large calcite contents, respectively. Firing of dolomite-rich clays at temperatures >900°C yielded a member of the gehlenite-åkermanite group and diopside. Anorthite, enstatite, periclase, forsterite, and monticellite may also form in the firing products.
Chitosan (CTS) modified montmorillonite (Mnt) composites (CTS-Mnt), which have been widely reported for the adsorption of heavy-metal ions and biological dyes, have not been applied to the field of mycotoxin adsorption. The current study was focused on the preparation of CTS-Mnt by calcination as a mycotoxin adsorbent for the efficient removal of aflatoxin B1 (AFB1). The CTS-Mnt samples obtained were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and nitrogen adsorption/desorption analysis. The CTS-Mnt samples prepared at various calcination temperatures exhibited varying structural configurations, surface hydrophobicities, and texture properties. The results revealed that stable CTS-Mnt speciments, obtained at <350°C, displayed superior adsorption capacity for AFB1 from a simulated gastrointestinal tract, increasing from 0.51 mg/g of raw Mnt to 4.97 mg/g. With increased calcination temperature, the effect of pH on the adsorption process of AFB1 becomes negligible. This study demonstrates that the novel CTS-Mnt has tremendous potential as an AFB1 adsorbent.
Analyses of the layer structure of Na-montmorillonite have been performed using 27Al MAS and 27Al MQMAS NMR techniques. Results of 27Al MAS NMR measurements at higher magnetic field strength (16.4 T) suggest that the 4-coordinated Al site in Na-montmorillonite has two different structures. This was confirmed by the fact that two peaks corresponding to 4-coordinated Al are observed in the 27Al MQMAS NMR at high magnetic field strength. The ratio of two 4-coordinated Al sites was found to be affected by water in the interlayer space because the area ratio of cross peaks corresponding to two 4-coordinated Al sites changes with the water content.
The sorption of two sulfonylurea herbicides (SU), metsulfuron methyl and nicosulfuron, on pure clays and organoclays was investigated. Three clays (Arizona smectite, SAz-1, Wyoming smectite, SWy-2, and hectorite, SHCa-1), were treated with amounts of octadecylammonium (ODA) or dioctadecyldimethylammonium (DODMA) cations equal to ∼50 and 100% of the clays’ cation exchange capacity (CEC). Sorption isotherms were fitted to the Freundlich equation. While no measurable sorption was found on the pure clays (Kf = 0), organoclays prepared using both primary and quaternary amines were effective as SU sorbents. The metsulfuron methyl Kf values ranged between 196 and 1498 µmol1−1/n kg−1 L1/n, and Kf values for nicosulfuron, which were lower than those of metsulfuron methyl, ranged from 35 to 198 umol1−1/n kg−1 L1/n. As shown by sorption coefficients, Kd and KOC, SWy-2 treated with DODMA at ∼100% of the CEC was the most effective sorbent for metsulfuron, Kd = 684 L kg−1 and KOC = 2138 L kg−1. For nicosulfuron the most effective sorbent was SAz-1 with ODA at ∼ 50% of the CEC (Kd = 147 L kg−1 and KOC = 1233 L kg−1). In contrast to other weak-acid herbicides, such as phenoxy and picolinic acids, no clear relationships were found between sorption and layer charge, organic carbon content, and basal spacing of the organoclays for both sulfonylurea herbicides. Sorption of both herbicides on organoclays was assumed to involve hydrophobic and polar interactions for which the availability of interlayer room between organocations was a very important factor.
The photochemically assisted Fenton reaction (photo-Fenton) is important because it may be particularly effective for the degradation of harmful organic compounds in the environment using solar light. The purpose of the present study was to determine the effectiveness of hydroxy Fe/Al-intercalated montmorillonites (Fe/Al-Mt) as photo-Fenton catalysts. In particular, different Fe/Al molar ratios were of interest as a means to vary catalytic activity. Intercalation was achieved via an ion-exchange method and brilliant orange X-GN was the test compound for photodegradation by hydrogen peroxide (H2O2) under visible-light irradiation (γ < 420 nm) in the presence of Fe/Al-Mt. The Fe/Al-Mt materials obtained were characterized by powder X-ray diffraction, N2 adsorption/desorption, X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopic analysis, and ultraviolet-visible spectroscopy. The decoloration performance of Fe/Al-Mt was investigated using different experimental parameters, including the synthesis method, the Fe/Al molar ratio of the intercalating solution, the catalyst dosage, the H2O2 dosage, and the pH. The results of photo-Fenton reaction showed that the photocatalytic activity of Fe/Al-Mt was enhanced significantly by the extent of hydroxy Al/Fe intercalation. For optimal reaction conditions, 99.92% degradation efficiency of X-GN was achieved after 140 min of reaction. To obtain further information on the visible-light-assisted photo-Fenton process, a high-performance liquid chromatography-mass spectrometry method was applied to indentify the intermediate products and a degradation pathway was proposed.
The arguments of Nieto et al. (2010) in favor of the incorporation of H3O+ rather than H2O in interlayer positions of illite are disputable. Stoichiometric arguments suggest that the excess water in the Silver Hill illite is in the form of H2O. Moreover, recent thermodynamic models assuming the incorporation of interlayer H2O in illite provide reasonable estimates of temperature and water content using the AEM/TEM analyses of Nieto et al. (2010).
The mechanism of decolorization of crude maize and sunflower oils was studied by means of adsorption of β-carotene by a low-grade bentonite, containing mixed-layered illite-smectite. Decolorization depends on temperature and the time required for equilibrium decreases with increasing temperature. The study of the kinetics of adsorption showed that decolorization of maize oil is a first-order process which occurs in two steps: a first fast step with higher activation energy (25.6 kJ mol−1), indicating the influence of a chemical interaction between the pigment and the clay surface, followed by a second slow step with low activation energy (12.3 kJ mol−1), characteristic of physical adsorption on the previously adsorbed molecules. Decolorization of sunflower oil is also a first-order process, described by a single mechanism with intermediate activation energy (19.0 kJ mol−1). Adsorption isotherms of decolorization of maize oil follow the Freundlich equation, indicating the existence of heterogeneous adsorption sites on the solid's surface. Heterogeneity is attributed both to different active centers on the smectite surface (Brönsted and Lewis centers) and to the different phases present in bentonite, such as illitic layers and clinoptilolite, which also have active centers on their surfaces.
The pH of aqueous bentonite suspensions is known to be influenced by carbonates present even in minor amounts. On the other hand, at high solid:liquid ratios (at standard pH measurement conditions: 2% w/w suspension), the type of exchangeable cation in the smectite is also known to determine pH (particularly Na+ or Ca2+). By cation-exchange tests we proved that exchanging the Ca2+ for Na+ results in an increase in the pH. However, this increase in pH was only found if excess salts were removed from the system (by washing or dialysis, respectively). The effect of the type of exchangeable cation can, at least partially, be explained by hydrolysis of Ca2+. On the other hand, a pronounced alkalinity of Na bentonites is observed which can, at least partially, be attributed to the hydrolysis of montmorillonite (Na+ is exchanged for H+ of water). The increase in the volume of the Stern layer, caused by increasing the degree of delamination, is also suggested to play a role. H+ and Na+ are concentrated in the Stern layer. Hence, increasing the Stern layer volume decreases the amount of H+ and Na+ in solution and thus increases pH. Unfortunately, both processes, montmorillonite hydrolysis and delamination, depend on the ionic strength. Distinguishing the processes quantitatively, therefore, is an analytical challenge, and impossible based on the data presented here.
To model the pore-water chemistry of clays and clay stones, all of the above-mentioned processes have to be considered. It is possible that other reactions, not identified in the present work, contribute toward the pH values of aqueous bentonite suspensions.
Feroxyhyte (δ′-FeOOH) is a relatively uncommon Fe oxide mineral and one of the few phases in the system Fe2O3-H2O for which thermodynamic properties are not known. In natural occurrences, it is always fine-grained, although samples with larger particle sizes and better crystallinity (labeled as δ-FeOOH) can be prepared in the laboratory. This contribution presents a thermochemical study on a series of feroxyhyte samples. One is fine-grained and poorly crystalline, similar to natural materials, while the other three are of better crystallinity. The enthalpy of formation of feroxyhyte at 298.15 K is −547.4±1.3kJ mol−1 for the poorly crystalline sample (surface area 88 m2/g), and −550.6±1.4, −550.9±1.3, and −552.6±1.2 kJ mol−1 for the samples with better crystallinity. The entropy of feroxyhyte can be estimated only crudely, because it is influenced to a great extent by its magnetic properties, particle size, and structural disorder. The $S_{298}^{\rm{o}}$ of feroxyhyte is estimated here to be 65±5 J K−1 mol−1. The Gibbs free energy of the reaction feroxyhyte → hematite + liquid water is −7.4 to −12.6 kJ mol−1 at 298.15 K. The Gibbs free energy of formation (${\rm{\Delta }}G_{\rm{f}}^{\rm{o}}$) of the fine-grained, poorly crystalline feroxyhyte is −478.1±2.0 kJ mol−1 at 298.15 K. Since this sample is closest in its physical properties to natural feroxyhyte, this ${\rm{\Delta }}G_{\rm{f}}^{\rm{o}}$ value should be used in thermodynamic modeling related to processes involving naturally occurring feroxyhyte. In terms of Gibbs free energy and enthalpy, feroxyhyte is very similar to lepidocrocite and maghemite, and, like these two phases, has no thermodynamic stability field in the system Fe2O3-H2O, except possibly at the nanoscale.
The objective of the present study was to investigate changes in the structural, textural, and surface properties of tubular halloysite under heating, which are significant in the applications of halloysite as functional materials but have received scant attention in comparison with kaolinite. Samples of a purified halloysite were heated at various temperatures up to 1400°C, and then characterized by X-ray diffraction, electron microscopy, Fourier-transform infrared spectroscopy, thermal analysis, and nitrogen adsorption. The thermal decomposition of halloysite involved three major steps. During dehydroxylation at 500–900°C, the silica and alumina originally in the tetrahedral and octahedral sheets, respectively, were increasingly separated, resulting in a loss of long-range order. Nanosized (5–40 nm) γ-Al2O3 was formed in the second step at 1000–1100°C. The third step was the formation of a mullite-like phase from 1200 to 1400°C and cristobalite at 1400°C. The rough tubular morphology and the mesoporosity of halloysite remained largely intact as long as the heating temperature was <900°C. Calcination at 1000°C led to distortion of the tubular nanoparticles. Calcination at higher temperatures caused further distortion and then destruction of the tubular structure. The formation of hydroxyl groups on the outer surfaces of the tubes during the disconnection and disordering of the original tetrahedral and octahedral sheets was revealed for the first time. These hydroxyl groups were active for grafting modification by an organosilane (γ-aminopropyltriethoxysilane), pointing to some very promising potential uses of halloysite for ceramic materials or as fillers for novel clay-polymer nanocomposites.
Hydroxy-interlayered minerals (HIMs) are typical of moderately acidic soils. Barnhisel and Bertsch (1989) defined the hydroxy-interlayered clay minerals as a solid-solution series between smectite, vermiculite and pedogenic or aluminous chlorite end-members. Their experimental data for the relationship between the decrease in cation exchange capacity (CEC) and the amount of Al fixed in the interlayers of smectites and vermiculites is reinterpreted using calculated structural, chemical and X-ray diffraction (XRD) evidence. The adsorbed Al ions are in a 6-fold coordination state: [Al(OH)x(H2O)y](3−x)+ with x+y = 6. The polymerization process occurs before saturation of the exchange sites by Al ions. Some of the adsorbed Al ions form polynuclear cations keeping a constant positive charge.
X-ray diffraction patterns of oriented preparations in the ethylene glycol-solvated state suggest that HIMs consist of randomly interstratified expandable and chlorite-like layers (17 and 14.2 Å). Chlorite-like layers result from the selective adsorption of Al complex ions in specific interlayer zones that behave similarly to Al-chlorite (donbassite-like) with incomplete (60%) ‘gibbsite-like’ sheets (chlorite60). Using this framework, HIM XRD patterns can be interpreted by comparison with calculated chlorite60-dismectite mixed-layer mineral patternss using the NEWMOD software.