To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hydroxy-interlayered minerals (HIMs) are typical of moderately acidic soils. Barnhisel and Bertsch (1989) defined the hydroxy-interlayered clay minerals as a solid-solution series between smectite, vermiculite and pedogenic or aluminous chlorite end-members. Their experimental data for the relationship between the decrease in cation exchange capacity (CEC) and the amount of Al fixed in the interlayers of smectites and vermiculites is reinterpreted using calculated structural, chemical and X-ray diffraction (XRD) evidence. The adsorbed Al ions are in a 6-fold coordination state: [Al(OH)x(H2O)y](3−x)+ with x+y = 6. The polymerization process occurs before saturation of the exchange sites by Al ions. Some of the adsorbed Al ions form polynuclear cations keeping a constant positive charge.
X-ray diffraction patterns of oriented preparations in the ethylene glycol-solvated state suggest that HIMs consist of randomly interstratified expandable and chlorite-like layers (17 and 14.2 Å). Chlorite-like layers result from the selective adsorption of Al complex ions in specific interlayer zones that behave similarly to Al-chlorite (donbassite-like) with incomplete (60%) ‘gibbsite-like’ sheets (chlorite60). Using this framework, HIM XRD patterns can be interpreted by comparison with calculated chlorite60-dismectite mixed-layer mineral patternss using the NEWMOD software.
The iron chemistry of aluminosilicates can markedly affect their adsorption properties due to possible changes in surface charge upon exposure to a variety of processes in the environment. One of these processes is chemical leaching, but to date little has been reported on the susceptibility of structural Fe to chemical leaching. The purpose of the current study was to determine the effects of solution pH on the stability of structural Fe in kaolinites, illite, and bentonite and the potential for formation of ancillary (oxyhydr)oxides. Structurally bound Fe does not participate in sorption properties but Fe that is released and phase transformed during leaching could take part in adsorption processes and form complexes and/or covalent bonds via Fe ions. Five different Fe-bearing clay minerals were treated in 0.5 M and 2 M HCl, distilled H2O, 0.1MKCl, and 0.5MKHCO3 for 24 h. The amount of Fe leached varied from 10 μg g-1 (for 0.1 M KCl) to 104 μg g-1 (for 2 M HCl) depending on the leaching agents. Acidic and water treatments indicated a relative independence of leached Fe on the initial Fe content in the clay and, conversely, a heavy dependence on the crystallinity of initial Fe phases. Well crystallized Fe(III) was stable during the leaching process, while poorly crystallized and amorphous Fe(III) phases were less stable, forming new ion-exchangeable Fe3+ particles. Under alkaline conditions, no relation between Fe crystallinity and mobility was found. The structural and surface changes resulting from leaching processes were identified by equilibrium adsorption isotherms. In kaolinite, the specific surface area (SBET) and porosity changed independently of Fe leaching due to the stability and crystallinity of Fe. In bentonite, the number of micropores was reduced by their partial saturation with Fe3+ particles caused by poorly crystallized and more reactive Fe forms during the leaching process. Potential phase transformations of Fe were characterized by the voltammetry of microparticles; well crystallized Fe(III) oxides remained stable under leaching conditions, while poorly crystallized and amorphous Fe(III) phases were partially dissolved and transformed to reactive Fe3+ forms.
Boron has been shown to be a useful trace element in clay-mineralization reactions, raising the possibility that B studies may provide a means to investigate environmental controls on palagonitization. The objective of the present study was to address calibration, matrix effects, and B exchangeability issues such that meaningful secondary ion mass spectrometry (SIMS) microanalysis of B in thin sections of palagonite will be feasible. Silver Hill illite (IMt-1) was found to be a suitable calibration reference material, based on compositional similarity, relatively high B content, and ease of mounting on thin-section samples for SIMS microanalysis. Matrix effects of borated sideromelane and illite were compared and found to be similar, confirming previous studies which showed no matrix effects for B among minerals. Boron substitutes for Si in tetrahedral sites and also can be adsorbed in exchangeable sites of 2:1 clay minerals. Similarly, B can be found in tetrahedral and exchangeable sites within palagonite, which consists of both layered and amorphous volumes. In order to measure tetrahedral B content and isotopic ratio in the palagonite, exchangeable B was removed by soaking sample thin sections in a 1 M NH4Cl solution until exchangeable cation concentrations were constant. Treated samples showed decreases in B content and isotopic ratio with exchange. Extraction of exchangeable B permits the direct measurement of tetrahedral B content and isotopic ratio. The exchange technique devised and tested here should have broad applicability to thin-section microanalysis of B in clay and clay-like materials where cation exchange can be used for surface-analytical techniques. The present study represents an initial attempt to address samplepreparation, calibration, and potential matrix-effects problems for analyses by SIMS. Further refinements may improve the accuracy of the measurements, but the results presented here indicate that meaningful measurements are possible.
Good morning, everyone. My name is John Swords. I am the legal adviser at the North Atlantic Treaty Organization (NATO) headquarters. It is a great honor to be with you here in Washington seventy-five years to the day after the North Atlantic treaty was signed here in Washington in 1949. When those twelve original allies committed to collective defense, to treat an attack on one as an attack on all, they were motivated by a desire to defend democracies against Soviet aggression in Europe and beyond. And in that sense, unfortunately, the alliance has come full circle today. Russia's brutal war of aggression against Ukraine has once again shattered peace in Europe and once again threatens the values of democracy, freedom, and the rule of law that are enshrined in the North Atlantic Treaty. But once again, nations have rallied around NATO in response, including new allies Finland and Sweden, who are now signatories to the treaty.
The behavior of mineral mixtures can be significantly different from the behavior of the individual components of the mixture due to differences between the mechanical and chemical properties of the individual minerals, and their ensuing effects on interparticle interactions and fabric formation. This study examines mixtures of kaolinite and calcium carbonate at different mass fractions using sedimentation, viscosity, and liquid-limit tests. These macroscale tests represent a wide range of solid-volume fractions and strain levels, with emphasis on high water-content conditions to magnify the effects of electrical forces. The results demonstrate that interparticle interactions depend on mineral surface-fluid effects, particle geometry, relative particle size, and solids content. With small solids contents, the kaolinite/calcium carbonate mixture behavior is a function of electrostatic interactions between oppositely charged mineral particles that promote flocculation; however, with large solids contents, the specific surface area of the minerals is the controlling factor. These results are relevant to many natural soil environments and to the possible development of engineered mineral mixtures for industrial applications.
Permeability is often the limiting factor in clay-based barrier systems designed to attenuate miscible or immiscible contaminant transport. One critical aspect of barrier design is prediction of the effects of permeant conditions on physicochemical properties (e.g swelling) of the clay component and thus, ultimately, the permeability of the barrier. To this end, the permeability of an organically modified bentonite to ethanol-water solutions was determined to approximate the effects of organo sorption-induced swelling. The bentonite was modified with a substituted alkylammonium cation: benzyloctadecyl-dimethylammonium (BODMA). Powder X-ray diffraction (XRD) measurements were used to measure interlayer expansion and to estimate aggregate particle densities at any given ethanol concentration. Permeability measurements were conducted on samples under confining overburden stresses of 43 kPa (∼2.5 m of saturated soil) using a hydraulic gradient of ∼300. Sample thickness was continuously monitored during measurements of volumetric flow so that sample strain, void ratio and porosity could be calculated from changes in sample pore volumes. For calculations of porosity and void ratio, the swelling solid volume, determined from XRD, was assumed to include the sorbed layer (crystalline water/ethanol), the thickness of which is not normally considered in engineering applications. Exposure of the BODMA bentonite to increasing ethanol concentrations increased the swell volume of the clay. Measured coefficients of permeability for the BODMA bentonite decreased from ∼1 × 10−7m s−1 for pure water to ∼8 × 10−10m s−1 for pure ethanol. Exposure of the organo clay to ethanol-water solutions containing 0.2 M NaCl increased the effect of ethanol on clay swelling and permeability. Probable consequences of the effects of sorption-induced swelling on permeability and the performance of organo clay-based permeable reactive barriers are discussed.
Miocene rifting and associated rhyolitic (K-rich) volcanism resulted in the deposition of pyroclastic material in the central Simav graben, near Karacaderbent, Turkey. The pyroclastics were deposited in a lacustrine environment, altered to clinoptilolite-rich tuffs and cross-cut by several transform faults along which hydrothermal fluids circulated. Petrography and quantitative phase analysis by X-ray diffraction show that the Karacaderbent tuff consists mainly of the diagenetic products clinoptilolite, opal CT, smectite, and celadonite. Electron microprobe analyses and cation exchange capacity (CEC) measurements confirm the predominance of K-rich clinoptilolite. Near fault zones, clinoptilolite was replaced by authigenic opal CT and alkali feldspar, and the remaining clinoptilolite was enriched in Na. Silicification around fault zones was confirmed by X-ray fluorescence. Zeolitization of K-rich rhyolitic starting materials took place under mildly alkaline, low-salinity conditions, probably in a closed hydrologic system. The subsequent hydrothermal alteration along faults had only a minor impact. The homogeneous nature, large (74–87 wt.%) clinoptilolite content, large CEC, and K-rich composition of the deposit favor exploitation of this material for applications in agriculture, horticulture, and waste-water purification; as feed additives; and as pozzolans for cement production.
The use of porous filters is indispensable in laboratory- and field-scale diffusion studies, where sample confinement is needed for mechanical reasons. Examples are diffusion studies with compacted swelling clays or brittle clay stones. Knowledge of the diffusion properties of these filters is important in cases where they contribute significantly to the overall diffusive resistance in the experimental setup. In the present study, measurements of effective diffusion coefficients (Db) in porous, stainless steel filter discs are reported for tritiated H2O (HTO), 22Na+, Cs+, and Sr2+ before and after use of the filters in diffusion experiments with different clay minerals. The Db values for used filters were found to be less than those of the as-received filters by ∼30–50%. The Db values measured for the diffusion of HTO, 22Na+, Cs+, and Sr2+ in unused and used stainless steel filter discs correlated fairly well with the respective molecular diffusion coefficients in bulk water. Although such correlations are inherently associated with some uncertainties, they allow reasonable estimates to be made for diffusants for which no Db values are available. For the first time, a procedure is outlined that allows an integrative assessment to be made for the impact of the uncertainties in the filter diffusion properties on the combined standard uncertainties of the diffusion parameters obtained from through-diffusion experiments. This procedure can be used in the design and optimization of through-diffusion experiments in which the diffusive resistance of the porous filters must not be ignored. Shown here, as a general rule of thumb, is that, if the effective diffusion coefficient in the porous filter is at least three times larger than that in the clay, the choice of geometrical boundary conditions is rather uncritical, as long as the thickness of the clay sample is greater than that of the porous filters.
Varved clay deposits from ice-dammed lakes are a particularly important and broadly applied raw material used for the production of high-quality ceramics (red bricks, roof tiles, etc.), but the mineralogy and geochemistry of these sediments are not fully understood. The aim of the present study was to determine the chemical and mineralogical composition of ice-dammed lake sediments of the Lębork deposit. Major-element analysis of the compositions of selected samples from the ice-dammed lake clays was performed by X-ray fluorescence (XRF) and trace elements were determined by inductively coupled plasma-mass spectrometry. The mineralogical composition of clay samples was determined by X-ray diffraction (XRD). Analyses of the chemical composition of the ice-dammed lake clays of the Lębork deposit showed that the dominant component was SiO2 with a mean content of 56.13 wt.%; the second most abundant component was Al2O3, with a mean content for the entire deposit of 11.61 wt.%. Analysis by ICP-MS indicated the presence of rare earth elements (REE), e.g. cerium, neodymium, lanthanum, and praseodymium; their mean contents are: 56.9, 27.0, 26.3, and 7.3 ppm, respectively. Mineralogical analysis of the varved clays identified quartz, muscovite, calcite, and clay minerals – illite, kaolinite, and montmorillonite. The material filling the Lębork basin is characterized by small lateral and vertical variability in chemical composition. The results of the present study may be of considerable importance in determining the parent igneous, metamorphic, and sedimentary rocks, the weathering products of which supplied material to the ice-dammed lake, as well as in determining the mechanisms and character of the sedimentation process itself.
Contamination of the environment with heavy metals, including cationic radionuclides, is a serious problem which has yet to be fully overcome. A class of potentially effective cation exchangers for sequestering heavy metals which has received little attention is K-depleted mica. The purpose of this study was to investigate the heavy-metal cation exchange properties of K-depleted phlogopite and biotite, which were prepared from a natural phlogopite and biotite, respectively, using sodium tetraphenylborate (NaTPB). The X-ray diffraction (XRD) patterns showed that interlayer K+ ions were completely replaced with exchangeable Na+ ions, resulting in the expansion of the d001 spacing of both K-depleted phlogopite and K-depleted biotite. In order to investigate the cation exchange selectivity of K-depleted phlogopite and biotite for Co2+ and Ni2+, cation exchange isotherms and Kielland plots were constructed. The isotherms and Kielland plots indicated that both K-depleted phlogopite and biotite are highly selective for Co2+ as well as Ni2+. The XRD patterns after both 2Na+ → Co2+ and Ni2+ exchange reactions suggest that double sheets of interlayer water are present in the interlayer. These K-depleted micas are potential cation exchange materials for removal of some heavy metals such as Ni and radioactive species such as 60Co from solution.
The flavonoid naringin is the main source of the undesirable bitter taste in some citrus juices. In commercial debittering processes, the naringin is adsorbed on non-ionic polymeric resins. Organo-clays (OCs), which have been used as sorbents for organic pollutants, could also have affinity for the naringin molecule, and thus potentially could serve as a debittering agent. The objective of the present study was to characterize the sorption capacity of a prepared OC to evaluate its ability to remove naringin from aqueous solutions, investigating the effect of adsorbent dose, initial concentration of naringin, temperature, contact time, and pH. The OC was prepared by the intercalation of cationic surfactant hexadecyltrimethylammonium bromide in a Mexican bentonite. The host clay and the OC were characterized by X-ray diffraction, Fourier-transform infrared, and nitrogen gas adsorption. The OC showed a surface area of 9.3 m2 g-1, 11.35 nm average pore diameter, and a basal spacing, d001, of 2.01 nm. The adsorbent removed naringin at the rate of 60-72% at 25°C and pH 3. The sorption capacity increased with pH and temperature. Experimental data were well fitted by both Langmuir and Freundlich adsorption models. Most of the sorption took place during the first 10 min and the equilibrium time was reached within 720 min. The rate of sorption was adjusted to pseudo second-order kinetics.
The strong adsorption to kaolinite of four polyaromatic, cationic dyes (9-aminoacridine, 3,6-diaminoacridine, azure A and safranin O), which adsorb much less to alumina or silica, was investigated by means of acid-base titrations, measurements of adsorption at varying pH and dye concentration, and by ATR-FTIR spectroscopy. The four dyes adsorb to kaolinite to similar extents, with little change over the pH range 3–10, but at higher pH (above the pKas of the dyes) the adsorption of 9-aminoacridine and 3,6-diaminoacridine decreases, that of azure A increases, and that of safranin O stays approximately constant. Although the dyes adsorb to kaolinite much more strongly than metal ions do, titration and spectroscopic data show that there is only limited chemical interaction between the adsorbed dyes and the kaolinite surface. The results indicate that electrostatic interaction between the dye molecules and the kaolinite surface is necessary for adsorption, but that hydrophobic interactions also contribute. It is proposed that the relatively hydrophobic silica faces of kaolinite, which carry low-density permanent negative charge, facilitate aggregation and adsorption of the positively charged, flat, aromatic dye molecules.
Explanations for the successful expansion and consolidation of the European Union and its legal system have long emphasized the importance of domestic courts’ sending preliminary references to the Court of Justice. Key to many of these theoretical accounts is the claim that domestic courts are better equipped than the Court of Justice to compel national governments to comply with EU law. Integrating insights from the comparative judicial politics literature into the context of the EU's preliminary references system, we provide a theoretical and empirical foundation for this claim by arguing that incorporating domestic courts into the EU legal process enhances public support for expansive judicial interpretations of EU law. We go on to argue, however, that this transfer of legitimacy depends on citizens’ views of the national and European courts. We support our argument with evidence from a preregistered survey experiment fielded in Germany.