We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A review of fabric studies of clays suggests the need for relating those fabric characteristics which are revealed at the two levels of magnification provided by optical and electron microscopy, and a technique to achieve this has been developed and is described within the context of the initial stages of a long term study of the interrelation between fabric and engineering behaviour. Two kaolinitic clays with contrived fabrics were prepared by controlling particle size, moisture content and pH of suspension, and consolidation load and were subjected to shear loading to failure. Resin impregnation techniques which permit the kaolinite to be cut into thin sections for transmission electron microscopy have been optimized with the object of minimizing fabric strain and damage during ultratomy.
The fabrics of the hard and soft ambient material are qualitatively compared by means of electron micrographs and are explained in terms of the preparatory procedures adopted for fabric control. The fabrics of the two types of shear induced structures are also qualitatively compared and explained in terms of the original fabrics and the subsequent shear loading.
An infrared method has been developed for estimating kaolinite in sediments. Hydroxyl stretching bands of kaolinite in sediments can be recorded by using a differential technique which eliminates the overlapping owing to other mineralic constituents present. By adding known amounts of an appropriate standard to the sample and by measuring intensities of the OH bands before and after the addition it is possible to calculate the proportion of kaolinite in the test sample. The choice of the added standard is made from characteristic features of the hydroxyl stretching bands.
The t-plot method has been applied to the results of nitrogen adsorption at 76°K on sepiolite first heated in vacuo at various temperatures. Heating sepiolite samples in vacuo at 427°K results in a large decrease in surface area compared with samples outgassed at 373°K. A change in structure and a consequent collapse of micropores is postulated. However, the t-plots indicate that some microporosity remains. Outgassing at 623°K appears to destroy completely the micropores.
Electrochemical treatment of kaolinite-glass bead plugs in the presence of water and CaCl2 solutions produces dissolution of the glass beads, corrosion of the anodes, and transport of the released elements toward the cathodic zone. In this area, new mineral phases (both amorphous and crystalline) are synthesized. Most of these new phases, and especially the calcium silicate hydrate (CSH-1), are well known to exhibit important cementing properties. The nature and the extent of the modifications brought about by the treatment are dependent on the nature of the electrodes, the pH and the ionic strength of the circulating electrolyte, and the duration of the treatment.
The composition and physical properties of three clay soils were altered by introducing aluminum under an electro-chemical gradient in order to evaluate the role of pH in controlling changes in soil composition and the feasibility of pH buffering during electrochemical treatment.
Both X-ray diffraction and selective chemical extraction methods were used to determine the distribution and mode of occurrence of aluminum in the treated samples. Aluminum was detected in the treated samples in both exchangeable form and as a hydroxy-aluminum interlayer. Aluminum oxide minerals such as gibbsite were not detected in any of the treated samples. Mineralization by aluminum ions was speeded and intensified in bentonite soils by buffering the catholyte with carbon dioxide.
Plasticity of bentonite soil samples from South Dakota was reduced markedly by electrochemical treatment, whereas the plasticity of an illite soil from Illinois and an illite-montmorillonite soil from Mississippi were relatively unaffected. Nearly all treated samples exhibited some degree of electrochemical induration or mineralization. Induration was most pronounced in bentonite soil samples with high water contents and alkaline pH largely because of hydroxy-aluminum interlayering in the ciay. On the other hand interlayering was negligible in illite soil samples with low pH; the main effect of electrochemical treatment in this case was the addition of aluminum in exchange sites.
Clay beds 1–2 m thick and interbedded with marine limestones probably of early Eocene age are composed of nearly pure mixed-layer kaolinite-montmorillonite. Particle size studies, electron micrographs, X-ray diffraction studies, chemical analyses, cation exchange experiments, DTA, and TGA indicate that clays from three different localities contain roughly equal proportions of randomly interlayered kaolinite and montmorillonite layers. The montmorillonite structural formulas average K0·2Na0·2Ca0·2Mg0·2(Al2·5Fe1·03+Mg0·5)(Al0·75Si7.25)O20+(OH)4−, with a deficiency of structural (OH) in either the montmorillonite or kaolinite layers. Nonexchangeable K+ indicates that a few layers are mica-like. Crystals are mostly round plates 1/10 to 1/20 μ across. The feature most diagnostic of the mixed-layer character is an X-ray reflection near 8 Å after heating at 300°C. The clays are inferred to have developed by weathering of volcanic ash and subsequent erosion and deposition in protected nearshore basins.
The rates of dehydroxylation of smectites intercalated with the decomposition products of Ni(phen)3SO4 are from 2 to 4 times greater than those of clays without the heat-stable intercalate. These results suggest that the intercalated material, in keeping the clay sheets separated, provides a more ready avenue for water loss during the dehydroxylation process.
Vernadite (MnO2·nH2O) is a mineral with a poorly ordered structure. Its synthetic analogue is designated δ-MnO2. Birnessite and vernadite are independent mineral species and cannot be described further under the same name. They have similar hexagonal unit-cell parameters, a0, but different c0 parameters. Rancieite has a structure similar to that of birnessite. Calcium bearing, 14-Å birnessite occurring in nature was first described by the authors. In addition to the todorokite having the parameters a0 = 9.75 Å, b0 = 2.84 Å, and c0 = 9.59 Å, other species of natural todorokite are known having a0 parameters that are multiples of 4.88 Å equal to 14.6 and 24.40 Å, the b0 and c0 parameters being the same.
Acid and non-acid forms of kaolinite clays were found by potentiometric and conductometric titrations to possess a weak acid species, the concentration of which was increased by acidic preparation conditions and by the presence of soil organic matter bound to the clay. A stronger acid species was also found in untreated and in organic-free, HCl-treated samples (washed free of excess acid). The end points for organic-free and/or ion-exchanged samples were used to predict the end points for untreated samples. A surface-chemical model involving MOH2+, MOH, and MO− species (where M = Al and/or Fe) was fitted to the titration data and to the cation-exchange capacities. MOH2+ is the stronger acid and MOH the weaker acid; exchange of Na+ counterions by H+ converts MO−Na+ sites to MOH sites. Humic acid was probably complexed or chelated to some hydroxylated Al/Fe sites through COOH and phenolic OH groups. The COOH groups contributed supplementary stronger acid species which were not exchangeable, whereas the OH groups contributed supplementary weaker acid species and also increased the CEC relative to that for organic-free samples.
Adenosine-5-phosphates (ATP, ADP, AMP) are adsorbed by clay minerals at very low concentrations (≤2 mg/liter). In contrast to quartz, the clay minerals exhibit a strong preference for ATP over AMP. The experimental data are expressed as recovery rates (adenosine-phosphate in solution to total nucleotide added). For example, the recovery rates of ATP, ADP, and AMP in the presence of sodium montmorillonite are 0,17, and 100%; in the presence of quartz 95, 100, and 99%. The recovery rate of AMP on clays is markedly decreased by the presence of ATP, that is, ATP increases the adsorption of AMP by cooperative interactions.
A part of ATP not recovered in the equilibrium solution is dephosphorylated to ADP. For example, 45% of ATP not recovered in equilibrium solution with calcium montmorillonite is recovered as ADP; with sodium montmorillonite only ADP can be recovered in solution.