We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present radio observations of the galaxy cluster Abell S1136 at 888 MHz, using the Australian Square Kilometre Array Pathfinder radio telescope, as part of the Evolutionary Map of the Universe Early Science program. We compare these findings with data from the Murchison Widefield Array, XMM-Newton, the Wide-field Infrared Survey Explorer, the Digitised Sky Survey, and the Australia Telescope Compact Array. Our analysis shows the X-ray and radio emission in Abell S1136 are closely aligned and centered on the Brightest Cluster Galaxy, while the X-ray temperature profile shows a relaxed cluster with no evidence of a cool core. We find that the diffuse radio emission in the centre of the cluster shows more structure than seen in previous low-resolution observations of this source, which appeared formerly as an amorphous radio blob, similar in appearance to a radio halo; our observations show the diffuse emission in the Abell S1136 galaxy cluster contains three narrow filamentary structures visible at 888 MHz, between $\sim$80 and 140 kpc in length; however, the properties of the diffuse emission do not fully match that of a radio (mini-)halo or (fossil) tailed radio source.
To examine differences in noticing and use of nutrition information comparing jurisdictions with and without mandatory menu labelling policies and examine differences among sociodemographic groups.
Design:
Cross-sectional data from the International Food Policy Study (IFPS) online survey.
Setting:
IFPS participants from Australia, Canada, Mexico, United Kingdom and USA in 2019.
Participants:
Adults aged 18–99; n 19 393.
Results:
Participants in jurisdictions with mandatory policies were significantly more likely to notice and use nutrition information, order something different, eat less of their order and change restaurants compared to jurisdictions without policies. For noticed nutrition information, the differences between policy groups were greatest comparing older to younger age groups and comparing high education (difference of 10·7 %, 95 % CI 8·9, 12·6) to low education (difference of 4·1 %, 95 % CI 1·8, 6·3). For used nutrition information, differences were greatest comparing high education (difference of 4·9 %, 95 % CI 3·5, 6·4) to low education (difference of 1·8 %, 95 % CI 0·2, 3·5). Mandatory labelling was associated with an increase in ordering something different among the majority ethnicity group and a decrease among the minority ethnicity group. For changed restaurant visited, differences were greater for medium and high education compared to low education, and differences were greater for higher compared to lower income adequacy.
Conclusions:
Participants living in jurisdictions with mandatory nutrition information in restaurants were more likely to report noticing and using nutrition information, as well as greater efforts to modify their consumption. However, the magnitudes of these differences were relatively small.
Underrepresented researchers face more challenges than their well-represented counterparts. Perseverance and consistency of interest are associated with career success in well-represented physicians. Therefore, we examined associations of perseverance and consistency of interest with Clinical Research Appraisal Inventory (CRAI), science identity, and other factors related to career success among underrepresented post-doctoral fellows and early-career faculty.
Methods:
This is a cross-sectional analysis of data collected from September to October 2020 among 224 underrepresented early-career researchers at 25 academic medical centers in the Building Up Trial. We used linear regression to test associations of perseverance and consistency of interest scores with CRAI, science identity, and effort/reward imbalance (ERI) scores.
Results:
The cohort is 80% female, 33% non-Hispanic Black, and 34% Hispanic. The median perseverance and consistency of interest scores were 3.8 (25th–75th percentile: 3.7,4.2) and 3.7 (25th–75th percentile: 3.2, 4.0), respectively. Higher perseverance was associated with a higher CRAI score (β = 0.82; 95% CI = 0.30, 1.33, p = 0.002) and science identity (β = 0.44; 95% CI = 0.19, 0.68, p = 0.001). Higher consistency of interest was associated with a higher CRAI score (β = 0.60; 95% CI = 0.23, 0.96, p = 0.001) and higher science identity score (β = 0.20; 95% CI = 0.03, 0.36, p = 0.02), while lower consistency of interest was associated with imbalance favoring effort (β = –0.22; 95% CI = –0.33, –0.11, p = 0.001).
Conclusions:
We found that perseverance and consistency of interest are related to CRAI and science identity, indicating that these factors may positively influence one’s decision to stay in research.
The COVID-19 pandemic had an immediate impact on the lives and work of early-career researchers. We leveraged a cluster-randomized trial and compared survey data collected over two timepoints to explore whether these impacts persisted. Although more than a year had passed, 74% of participants reported that their research was affected in multiple ways in both 2020 and 2021. These data suggest that the effects of the pandemic on early-career researchers may be prolonged. Our findings additionally serve as an impetus to identify and implement solutions to early-career challenges that undoubtedly existed before the pandemic, but which COVID-19 brought into the spotlight.
Social unrest tied to racism negatively impacted half of NIH-funded extramural researchers underrepresented (UR) in science. UR early-career scientists encounter more challenges in their research careers, but the impact of social unrest due to systemic racism in this group is unclear. We used mixed methods to describe the impact of social unrest due to systemic racism on mentoring relationships, research, and psychological well-being in UR post-doctoral fellows and early-career faculty.
Methods:
This is a cross-sectional analysis of data collected in September 2021–January 2022 from 144 UR early-career researchers from 25 academic medical centers in the Building Up Trial. The primary outcomes were agreement on five-point Likert scales with social unrest impact statements (e.g., “I experienced psychological distress due to events of social unrest regarding systemic racism”). Thematic analysis was conducted on responses to one open-ended question assessing how social unrest regarding systemic racism affected participants.
Results:
Most participants were female (80%), non-Hispanic Black (35%), or Hispanic (40%). Over half of participants (57%) experienced psychological distress as a result of social unrest due to systemic racism. Participants described direct and indirect discrimination and isolation from other persons of color at their institutions. Twice as many participants felt their mentoring relationships were positively (21%) versus negatively (11%) impacted by social unrest due to systemic racism.
Conclusions:
Experiences with racial bias and discrimination impact the career and well-being of UR early-career researchers. Mentoring relationships and institutional support play an important role in buffering the negative impact of racial injustice for this population.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $\sim\!5$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim\!162$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $0.24\ \mathrm{mJy\ beam}^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
Underrepresented minorities have higher attrition from the professoriate and have experienced greater negative impacts of the COVID-19 pandemic. The purpose of this study was to compare the impact of COVID-19 on the lives of 196 early-career physician-scientists versus PhD researchers who are underrepresented in biomedical research. Participants in the Building Up study answered questions on the impact of the COVID-19 pandemic on their personal and professional lives, and a mixed-methods approach was used to conduct the analysis. While most participants experienced increases in overall stress (72% of PhD researchers vs 76% of physician-scientists), physician-scientists reported that increased clinical demands, research delays, and the potential to expose family members to SARS-CoV-2 caused psychological distress, specifically. PhD researchers, more than physician-scientists, reported increased productivity (27% vs 9%), schedule flexibilities (49% vs 25%), and more quality time with friends and family (40% vs 24%). Future studies should consider assessing the effectiveness of programs addressing COVID-19-related challenges experienced by PhD researchers and physician-scientists, particularly those from underrepresented backgrounds.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers $270 \,\mathrm{deg}^2$ of an area covered by the Dark Energy Survey, reaching a depth of 25–30 $\mu\mathrm{Jy\ beam}^{-1}$ rms at a spatial resolution of $\sim$11–18 arcsec, resulting in a catalogue of $\sim$220 000 sources, of which $\sim$180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
The inaugural data from the first systematic program of sea-ice observations in Kotzebue Sound, Alaska, in 2018 coincided with the first winter in living memory when the Sound was not choked with ice. The following winter of 2018–19 was even warmer and characterized by even less ice. Here we discuss the mass balance of landfast ice near Kotzebue (Qikiqtaġruk) during these two anomalously warm winters. We use in situ observations and a 1-D thermodynamic model to address three research questions developed in partnership with an Indigenous Advisory Council. In doing so, we improve our understanding of connections between landfast ice mass balance, marine mammals and subsistence hunting. Specifically, we show: (i) ice growth stopped unusually early due to strong vertical ocean heat flux, which also likely contributed to early start to bearded seal hunting; (ii) unusually thin ice contributed to widespread surface flooding. The associated snow ice formation partly offset the reduced ice growth, but the flooding likely had a negative impact on ringed seal habitat; (iii) sea ice near Kotzebue during the winters of 2017–18 and 2018–19 was likely the thinnest since at least 1945, driven by a combination of warm air temperatures and a persistent ocean heat flux.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
The remnant phase of a radio galaxy begins when the jets launched from an active galactic nucleus are switched off. To study the fraction of radio galaxies in a remnant phase, we take advantage of a $8.31$ deg$^2$ subregion of the GAMA 23 field which comprises of surveys covering the frequency range 0.1–9 GHz. We present a sample of 104 radio galaxies compiled from observations conducted by the Murchison Widefield Array (216 MHz), the Australia Square Kilometer Array Pathfinder (887 MHz), and the Australia Telescope Compact Array (5.5 GHz). We adopt an ‘absent radio core’ criterion to identify 10 radio galaxies showing no evidence for an active nucleus. We classify these as new candidate remnant radio galaxies. Seven of these objects still display compact emitting regions within the lobes at 5.5 GHz; at this frequency the emission is short-lived, implying a recent jet switch off. On the other hand, only three show evidence of aged lobe plasma by the presence of an ultra-steep-spectrum ($\alpha<-1.2$) and a diffuse, low surface brightness radio morphology. The predominant fraction of young remnants is consistent with a rapid fading during the remnant phase. Within our sample of radio galaxies, our observations constrain the remnant fraction to $4\%\lesssim f_{\mathrm{rem}} \lesssim 10\%$; the lower limit comes from the limiting case in which all remnant candidates with hotspots are simply active radio galaxies with faint, undetected radio cores. Finally, we model the synchrotron spectrum arising from a hotspot to show they can persist for 5–10 Myr at 5.5 GHz after the jets switch of—radio emission arising from such hotspots can therefore be expected in an appreciable fraction of genuine remnants.
We have found a class of circular radio objects in the Evolutionary Map of the Universe Pilot Survey, using the Australian Square Kilometre Array Pathfinder telescope. The objects appear in radio images as circular edge-brightened discs, about one arcmin diameter, that are unlike other objects previously reported in the literature. We explore several possible mechanisms that might cause these objects, but none seems to be a compelling explanation.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$ 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (${\sim}60\%$), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability.
Many institutions are attempting to implement patient-reported outcome (PRO) measures. Because PROs often change clinical workflows significantly for patients and providers, implementation choices can have major impact. While various implementation guides exist, a stepwise list of decision points covering the full implementation process and drawing explicitly on a sociotechnical conceptual framework does not exist.
Methods:
To facilitate real-world implementation of PROs in electronic health records (EHRs) for use in clinical practice, members of the EHR Access to Seamless Integration of Patient-Reported Outcomes Measurement Information System (PROMIS) Consortium developed structured PRO implementation planning tools. Each institution pilot tested the tools. Joint meetings led to the identification of critical sociotechnical success factors.
Results:
Three tools were developed and tested: (1) a PRO Planning Guide summarizes the empirical knowledge and guidance about PRO implementation in routine clinical care; (2) a Decision Log allows decision tracking; and (3) an Implementation Plan Template simplifies creation of a sharable implementation plan. Seven lessons learned during implementation underscore the iterative nature of planning and the importance of the clinician champion, as well as the need to understand aims, manage implementation barriers, minimize disruption, provide ample discussion time, and continuously engage key stakeholders.
Conclusions:
Highly structured planning tools, informed by a sociotechnical perspective, enabled the construction of clear, clinic-specific plans. By developing and testing three reusable tools (freely available for immediate use), our project addressed the need for consolidated guidance and created new materials for PRO implementation planning. We identified seven important lessons that, while common to technology implementation, are especially critical in PRO implementation.
The Taipan galaxy survey (hereafter simply ‘Taipan’) is a multi-object spectroscopic survey starting in 2017 that will cover 2π steradians over the southern sky (δ ≲ 10°, |b| ≳ 10°), and obtain optical spectra for about two million galaxies out to z < 0.4. Taipan will use the newly refurbished 1.2-m UK Schmidt Telescope at Siding Spring Observatory with the new TAIPAN instrument, which includes an innovative ‘Starbugs’ positioning system capable of rapidly and simultaneously deploying up to 150 spectroscopic fibres (and up to 300 with a proposed upgrade) over the 6° diameter focal plane, and a purpose-built spectrograph operating in the range from 370 to 870 nm with resolving power R ≳ 2000. The main scientific goals of Taipan are (i) to measure the distance scale of the Universe (primarily governed by the local expansion rate, H0) to 1% precision, and the growth rate of structure to 5%; (ii) to make the most extensive map yet constructed of the total mass distribution and motions in the local Universe, using peculiar velocities based on improved Fundamental Plane distances, which will enable sensitive tests of gravitational physics; and (iii) to deliver a legacy sample of low-redshift galaxies as a unique laboratory for studying galaxy evolution as a function of dark matter halo and stellar mass and environment. The final survey, which will be completed within 5 yrs, will consist of a complete magnitude-limited sample (i ⩽ 17) of about 1.2 × 106 galaxies supplemented by an extension to higher redshifts and fainter magnitudes (i ⩽ 18.1) of a luminous red galaxy sample of about 0.8 × 106 galaxies. Observations and data processing will be carried out remotely and in a fully automated way, using a purpose-built automated ‘virtual observer’ software and an automated data reduction pipeline. The Taipan survey is deliberately designed to maximise its legacy value by complementing and enhancing current and planned surveys of the southern sky at wavelengths from the optical to the radio; it will become the primary redshift and optical spectroscopic reference catalogue for the local extragalactic Universe in the southern sky for the coming decade.