This work presents an experimental investigation of the effects of vortex shedding suppression on the properties and recovery of turbulent wakes. Four plates, properly modified so that they produce different vortex shedding strengths, are tested using high speed particle image velocimetry and hot-wire anemometry, and analysed using spectral proper orthogonal decomposition, mean-flow linear stability analysis and various turbulence statistics. When present, vortex shedding is found to exhibit a characteristic frequency that scales with the mean shear, providing a link between the mean flow and the main turbulent motion. To achieve full suppression of shedding, we combine the effects of porosity and fractal perimeter. The mean shear is then decreased to the point where the flow becomes convectively unstable and shedding vanishes. In that case, the onset of self-similarity is delayed, compared with the case with vortex shedding, and appears after another large-scale structure, the secondary vortex street, emerges. It is also found that both large- and small-scale intermittency are starkly reduced when shedding is absent. A simple theoretical representation of the wake dynamics explains the evolution of the wake properties and its connection to the coherent structures in the flow.