We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe system verification tests and early science results from the pulsar processor (PTUSE) developed for the newly commissioned 64-dish SARAO MeerKAT radio telescope in South Africa. MeerKAT is a high-gain (${\sim}2.8\,\mbox{K Jy}^{-1}$) low-system temperature (${\sim}18\,\mbox{K at }20\,\mbox{cm}$) radio array that currently operates at 580–1 670 MHz and can produce tied-array beams suitable for pulsar observations. This paper presents results from the MeerTime Large Survey Project and commissioning tests with PTUSE. Highlights include observations of the double pulsar $\mbox{J}0737{-}3039\mbox{A}$, pulse profiles from 34 millisecond pulsars (MSPs) from a single 2.5-h observation of the Globular cluster Terzan 5, the rotation measure of Ter5O, a 420-sigma giant pulse from the Large Magellanic Cloud pulsar PSR $\mbox{J}0540{-}6919$, and nulling identified in the slow pulsar PSR J0633–2015. One of the key design specifications for MeerKAT was absolute timing errors of less than 5 ns using their novel precise time system. Our timing of two bright MSPs confirm that MeerKAT delivers exceptional timing. PSR $\mbox{J}2241{-}5236$ exhibits a jitter limit of $<4\,\mbox{ns h}^{-1}$ whilst timing of PSR $\mbox{J}1909{-}3744$ over almost 11 months yields an rms residual of 66 ns with only 4 min integrations. Our results confirm that the MeerKAT is an exceptional pulsar telescope. The array can be split into four separate sub-arrays to time over 1 000 pulsars per day and the future deployment of S-band (1 750–3 500 MHz) receivers will further enhance its capabilities.
Levels of serotonin in the body are regulated by the serotonin transporters (SERT), which are predominantly located on the presynaptic terminals of serotonin-containing neurons. Alterations in the density of SERT have been implicated in the pathophysiology of many neuropsychiatric disorders.
Aim
To evaluate 123-I mZIENT (2(S)-[(S)-2b-carbomethoxy-3b-[3′-((Z)-2-iodoethenyl)phenyl]nortropane), a novel radiopharmaceutical for imaging SERT. The bio-distribution of the radiopharmaceutical in humans was investigated and dosimetry performed.
Methods
The study includes three healthy volunteers and three patients receiving SSRIs. Whole body images obtained on a gamma camera at 10 minutes, 1, 2, 3, 6, 24 and 48 hours post administration. Dosimetry was performed. ROIs were drawn over the brain, heart, kidneys, liver, lungs, salivary glands, spleen, thyroid and intestines. Blood was sampled at 5, 15, & 30 minutes and 1, 2, 3, 6, 24 and 48 hours post administration. Urine was collected at 1, 2, 3, 4, 6, 24 and 48 hours. Brain SPECT images were obtained using a neuroSPECT scanner at 4 hours, evaluated visually and analysed using ROI analysis.
Results
High quality SPECT images can be obtained after 100–150 MBq 123-ImZEINT. Regional brain uptake was observed in midbrain and basal ganglia in healthy volunteers, consistent with the known distribution of SERT. Biodistribution images demonstrated highest uptake in the lungs, brain, liver and intestines. The effective dose was within range of other commonly used ligands and is acceptable for clinical imaging.
Conclusion
123-ImZIENT is a promising agent for imaging SERT in humans with acceptable dosimetry.
The recession of mountain glaciers worldwide is increasing global sea level and, in many regions, human activities will have to adapt to changes in surface hydrology. Thus, it is important to provide up-to-date analyses of glacier change and the factors modulating their response to climate warming. Here we report changes in the extent of >120 glaciers on the Lyngen Peninsula, northern Norway, where glacier runoff is utilised for hydropower and where glacial lake outburst floods have occurred. Glaciers covered at least 114 km2 in 1953 and we compare this inventory with those from 1988, 2001 and a new one from 2014, and previously-dated Little Ice Age (LIA) limits. Results show a steady reduction in area (~0.3% a−1) between their LIA maximum (~1915) and 1988, consistent with increasing summer air temperatures, but recession paused between 1988 and 2001, coinciding with increased winter precipitation. Air temperatures increased 0.5°C per decade from the 1990s and the rate of recession accelerated to ~1% a−1 between 2001 and 2014 when glacier area totalled ~95.7 km2. Small glaciers (<0.05 km2) with low maximum elevations (<1400 m) experienced the largest percentage losses and, if warming continues, several glaciers may disappear within the next two decades.
40Ar/39Ar ages on the Hat Creek Basalt (HCB) and stratigraphically related lava flows show that latest Pleistocene tholeiitic basalt with very low K2O can be dated reliably. The HCB underlies ∼ 15 ka glacial gravel and overlies four andesite and basaltic andesite lava flows that yield 40Ar/39Ar ages of 38±7 ka (Cinder Butte; 1.65% K2O), 46±7 ka (Sugarloaf Peak; 1.85% K2O), 67±4 ka (Little Potato Butte; 1.42% K2O) and 77±11 ka (Potato Butte; 1.62% K2O). Given these firm age brackets, we then dated the HCB directly. One sample (0.19% K2O) clearly failed the criteria for plateau-age interpretation, but the inverse isochron age of 26"6 ka is seductively appealing. A second sample (0.17% K2O) yielded concordant plateau, integrated (total fusion), and inverse isochron ages of 26±18, 30±20 and 24±6 ka, all within the time bracket determined by stratigraphic relations; the inverse isochron age of 24"6 ka is preferred. As with all isotopically determined ages, confidence in the results is significantly enhanced when additional constraints imposed by other isotopic ages within a stratigraphic context are taken into account.
This article proposes an assessment of the ingestion doses potentially received by peopleliving in the Japanese areas most severely affected by the radioactive deposits due to theFukushima nuclear accident. The assessment distinguishes two consecutive periods: thefirst 2 months (March 15th to May 15th 2011) and the rest of the year 2011, according tothe two main foodstuff contamination periods identified (Renaud et al.,2013). On the basis of the worst-case hypothesis that can reasonably be made, theestimated doses are much lower than they might have been in other circumstances, onaccount of generally moderate levels of contamination for most foods, early evacuation ofthe most severely affected areas and the consumption bans ordered by the Japaneseauthorities. Thus, a single ingestion of 100 g of leafy vegetables in the early days by aone-year-old child living in non-evacuated localities near Iitate and Kawamata could haveled to an equivalent dose to the thyroid of about 25 mSv; and to a thyroid dose of about140 mSv for the rather unrealistic scenario of a daily consumption. Because of the rapiddecrease in the contamination of vegetables and a much weaker contamination of othercrops, and thanks to measures taken by the authorities (prohibition of consumption, use ofcertain fodder, etc.), the ingestion doses potentially received during the remainder ofthe year 2011 are estimated to be below 1 mSv. In the event that sales limits would havebeen ignored, only repeated consumption of mushrooms would have led to doses above thatlevel. Even with the worst-case hypotheses, the doses potentially caused by ingestion aremuch lower than those resulting from outdoor exposure to radioactive deposits:approximately several millisieverts in a year for the population living in thenon-evacuated localities near Iitate and Kawamata.
During and after the Fukushima accident, the IRSN collected and interpreted the resultsof radiological measurements performed on foodstuffs of terrestrial origin published byJapan's Ministry of Health between mid-March 2011 and July 2012. Analysis of the findingsshows that the accident's date, livestock-rearing practices and the deposits'characteristics had a decisive influence. The fact that radioactive fallout occurred veryearly in the growing and breeding season largely explains the moderate contamination ofmost foodstuffs of terrestrial origin, notably in the areas with the largest deposits. Inthe case of dairy products and meat, feeding imported fodder to livestock in stables, acommon practice in Japan, compounded the calendar effect. Measurements published in Japanhave also borne out the particular sensitivity of mushrooms, including cultivated species,and game.
The PULSE@Parkes project has been designed to monitor the rotation of radio pulsars over time spans of days to years. The observations are obtained using the Parkes 64-m and 12-m radio telescopes by Australian and international high school students. These students learn the basis of radio astronomy and undertake small projects with their observations. The data are fully calibrated and obtained with the state-of-the-art pulsar hardware available at Parkes. The final data sets are archived and are currently being used to carry out studies of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long time scales and 4) the extreme nulling phenomenon. The data are also included in other projects such as gamma-ray observatory support and for the Parkes Pulsar Timing Array project. In this paper we describe the current status of the project and present the first scientific results from the Parkes 12-m radio telescope. We emphasise that this project offers a straightforward means to enthuse high school students and the general public about radio astronomy while obtaining scientifically valuable data sets.
The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing-array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ∼ 10−9–10−8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper, we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.