We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To identify important risk factors for carbapenem-resistant Enterobacterales (CRE) infections among hospitalized patients.
Design:
We utilized a case–case–control design that compared patients with CRE infections to patients with carbapenem-susceptible Enterobacterales (CSE) infections and randomly selected controls during the period from January 2011 through December 2016.
Setting:
The study population was selected from patients at a large metropolitan tertiary-care and instructional medical center.
Patients:
Cases of CRE were defined as initial admission of adults diagnosed with a bacterial infection of an Enterobacterales species resistant clinically or through sensitivity testing to carbapenems 48 hours or more after admission. Cases of CSE were selected from the same patient population as the CRE cases within a 30-day window for admission, with diagnostic pathogens identified as susceptible to carbapenems. Controls were defined as adult patients admitted to any service within a 30-day window from a CRE case for >48 hours who did not meet either of the above case definitions during that admission.
Results:
Antibiotic exposure within 90 days prior to admission and length of hospital stay were both associated with increased odds of CRE and CSE infections compared to controls. Patients with CRE infections had >18 times greater odds of prior antibiotic exposure compared to patients with CSE infections.
Conclusions:
Antibiotic exposure and increased length of hospital stay may result in increased patient risk of developing an infection resistant to carbapenems and other β-lactams.
The COVID-19 pandemic has disrupted lives and livelihoods, and people already experiencing mental ill health may have been especially vulnerable.
Aims
Quantify mental health inequalities in disruptions to healthcare, economic activity and housing.
Method
We examined data from 59 482 participants in 12 UK longitudinal studies with data collected before and during the COVID-19 pandemic. Within each study, we estimated the association between psychological distress assessed pre-pandemic and disruptions since the start of the pandemic to healthcare (medication access, procedures or appointments), economic activity (employment, income or working hours) and housing (change of address or household composition). Estimates were pooled across studies.
Results
Across the analysed data-sets, 28% to 77% of participants experienced at least one disruption, with 2.3–33.2% experiencing disruptions in two or more domains. We found 1 s.d. higher pre-pandemic psychological distress was associated with (a) increased odds of any healthcare disruptions (odds ratio (OR) 1.30, 95% CI 1.20–1.40), with fully adjusted odds ratios ranging from 1.24 (95% CI 1.09–1.41) for disruption to procedures to 1.33 (95% CI 1.20–1.49) for disruptions to prescriptions or medication access; (b) loss of employment (odds ratio 1.13, 95% CI 1.06–1.21) and income (OR 1.12, 95% CI 1.06 –1.19), and reductions in working hours/furlough (odds ratio 1.05, 95% CI 1.00–1.09) and (c) increased likelihood of experiencing a disruption in at least two domains (OR 1.25, 95% CI 1.18–1.32) or in one domain (OR 1.11, 95% CI 1.07–1.16), relative to no disruption. There were no associations with housing disruptions (OR 1.00, 95% CI 0.97–1.03).
Conclusions
People experiencing psychological distress pre-pandemic were more likely to experience healthcare and economic disruptions, and clusters of disruptions across multiple domains during the pandemic. Failing to address these disruptions risks further widening mental health inequalities.
Modern videography provides an ever-widening window into subsea echinoderm life with vast potential for new knowledge. Supported by video evidence throughout, this Element begins with time-lapse video made in 1983 on film, using an off-the-shelf camera, flash, and underwater housings. Although quality has now been significantly improved by digital imagery, films from over thirty years ago captured crinoid feeding behavior previously unknown and demonstrated a great potential to learn about many other aspects of their biology. This sequence is followed by several examples of recent digital videography from submersibles of deep-sea crinoids and remotely operated vehicles (ROVs) (stalked and unstalked), as well as close-up video of crinoids in aquaria. These recent studies enabled a new classification of crinoid arm postures, provided detailed views of food particle capture, and revealed a wide range of behaviors in taxa never before seen in life.
Coalition governance divides policy-making influence across multiple parties, making it challenging for voters to accurately attribute responsibility for outcomes. We argue that many voters overcome this challenge by inferring parties’ policy-making influence using a simple heuristic model that integrates a number of readily available and cheaply obtained informational cues about parties (e.g., their roles in government and legislative seat shares)—while ignoring other cues that, while predictive of real-world influence, are not suitable for heuristic inference (e.g., median party status and bargaining power). Using original data from seven surveys in five countries, we show that voters’ attributions of parties’ policy-making influence are consistent with our proposed inferential strategy. Our findings suggest that while voters certainly have blind spots that cause them to misattribute policy responsibility in some situations, their attributions are generally sensible and consistent with the academic research on multiparty policy making.
Vitamins and minerals play an essential role within many cellular processes including energy production and metabolism. Biochemical changes and heightened metabolic demands lead to increases in the requirement for certain micronutrients alongside higher excretion of micronutrients through waste products, such as sweat and urine. Previously, supplementation with a multivitamin/mineral (MVM) for ≥ 28 days resulted in improvements to cognition and subjective state. Shifts in metabolism have also been demonstrated during cognitively demanding tasks following MVM in females, both acutely and following 8-week supplementation, suggesting that enhanced recovery is possible following MVM supplementation. The current study aimed to assess these effects further in males and females using metabolically challenging exercise and cognitive tasks.
Materials and Methods
This randomised, placebo-controlled, parallel groups study investigated the effects of a MVM complex in 82 healthy young (18–35y) exercisers. Subjective ratings and substrate metabolism were assessed during 30 minutes each of increasingly effortful incremental exercise and demanding cognitive tasks. Assessments took place on acute study days following a single dose (Day 1) of MVM, containing 3 times recommended daily allowance of water-soluble vitamins plus CoQ10, and following 4-week supplementation (Day 28).
Results
Energy expenditure (EE) was increased during cognitive tasks following MVM across Day 1 and Day 28, with greater effects in males. In males, MVM also increased carbohydrate oxidation and EE during exercise across Day 1 and Day 28. In females, mental tiredness was lower during exercise; increases in physical tiredness following 30 minutes of exercise were attenuated; and stress ratings following cognitive tasks were reduced following MVM. In males, MVM only lowered mental tiredness following 10 minutes of exercise. Those receiving MVM also reported lower ratings of perceived exertion following 10 minutes of exercise. These effects were apparent irrespective of day, but effects on mental tiredness were greater on Day 28. Ferritin levels were also higher on Day 28 in those receiving MVM.
Discussion
These findings extend on existing knowledge, demonstrating increased carbohydrate oxidation and EE in males following MVM supplementation for the first time. Importantly, they show modulation of EE and subjective tiredness following a single dose, providing further evidence for acute effects of MVM. Differential effects in men and women suggest that whilst males expend more energy, females may conserve their energy but report lower tiredness instead, demonstrating that sex may play an important role in the effects of MVM on energy metabolism and should be considered in future research.
The concept of exoplanetary habitability is evolving. The driving force is a desire to define the biological potential of planets and identify which can host complex and possibly intelligent life. To assess this in a meaningful manner, climate models need to be applied to realistic surfaces. However, the vast majority of climate models are developed using generic aquaplanet, or swamp planet, scenarios that provide uniform, surface frictional coefficients. However, aside from planets with largely uniform oceans, these models are not obviously useful when it comes to understanding the impact of climate on biodiversity. Here, we show that contrary to expectation, the aquaplanet models can be directly applied to planets with a variety of land areas, with little need for modification. Using this premise, this paper provides a simple mathematical framework that may be applied to more complex planetary surfaces and identifies the majority of the climate-model components that are needed to accurately determine the biological potential of habitable exoplanets. As a proof-of-concept, an available climate model for Proxima b is used to determine its biological potential, given a suitable atmosphere.
The maximum height trees can grow on Earth is around 122–130 m. The height is constrained by two factors: the availability of water, and where water is not limiting, the pressure available to drive the column of water along the xylem vessels against the pull of gravity (cohesion tension). In turn the height of trees impacts the biodiversity of the environment in a number of ways. On Earth the largest trees are found in maritime temperate environments along the Pacific Northwest coasts of northern California and southern Oregon. These forests provide a large number of secondary habitats for species and serve as moisture pumps that return significant volumes of water to the lower atmosphere. In this work, we apply simple mathematical rules to illustrate how super-terran planets will have significantly smaller trees, with concomitant effects on the habitability of the planet. We also consider the impact of varying tree height on climate models.
We review our current understanding of the interior structure and thermal evolution of Saturn, with a focus on recent results in the Cassini era. There has been important progress in understanding physical inputs, including equations of state of planetary materials and their mixtures, physical parameters like the gravity field and rotation rate, and constraints on Saturnian free oscillations. At the same time, new methods of calculation, including work on the gravity field of rotating fluid bodies, and the role of interior composition gradients, should help to better constrain the state of Saturn’s interior, now and earlier in its history. However, a better appreciation of modeling uncertainties and degeneracies, along with a greater exploration of modeling phase space, still leave great uncertainties in our understanding of Saturn’s interior. Further analysis of Cassini data sets, as well as precise gravity field measurements from the Cassini Grand Finale orbits, will further revolutionize our understanding of Saturn’s interior over the next few years.
OBJECTIVES/SPECIFIC AIMS: Objectives and goals of this study will be to: (1) compare fecal microbiota and fecal organic acids in irritable bowel syndrome (IBS) patients and controls and (2) investigate the association between colonic transit and fecal microbiota in IBS patients and controls. METHODS/STUDY POPULATION: We propose an investigation of fecal organic acids, colonic transit and fecal microbiota in 36 IBS patients and 18 healthy controls. The target population will be adults ages 18–65 years meeting Rome IV criteria for IBS (both diarrhea- and constipation-predominant, IBS-D and IBS-C) and asymptomatic controls. Exclusion criteria are: (a) history of microscopic colitis, inflammatory bowel disease, celiac disease, visceral cancer, chronic infectious disease, immunodeficiency, uncontrolled thyroid disease, liver disease, or elevated AST/ALT>2.0× the upper limit of normal, (b) prior radiation therapy of the abdomen or abdominal surgeries with the exception of appendectomy or cholecystectomy >6 months before study initiation, (c) ingestion of prescription, over the counter, or herbal medications affecting gastrointestinal transit or study interpretation within 6 months of study initiation for controls or within 2 days before study initiation for IBS patients, (d) pregnant females, (e) antibiotic usage within 3 months before study participation, (f) prebiotic or probiotic usage within the 2 weeks before study initiation, (g) tobacco users. Primary outcomes will be fecal bile acid excretion and profile, short-chain fatty acid excretion and profile, colonic transit, and fecal microbiota. Secondary outcomes will be stool characteristics based on responses to validated bowel diaries. Stool samples will be collected from participants during the last 2 days of a 4-day 100 g fat diet and split into 3 samples for fecal microbiota, SCFA, and bile acid analysis and frozen. Frozen aliquots will be shipped to the Metabolite Profiling Facility at Purdue University and the Mayo Clinic Department of Laboratory Medicine and Pathology for SCFA and bile acid measurements, respectively. Analysis of fecal microbiota will be performed in the research laboratory of Dr David Nelson in collaboration with bioinformatics expertise affiliated with the Nelson lab. Colonic transit time will be measured with the previously validated method using radio-opaque markers. Generalized linear models will be used as the analysis framework for comparing study endpoints among groups. RESULTS/ANTICIPATED RESULTS: This study seeks to examine the innovative concept that specific microbial signatures are associated with increased fecal excretion of organic acids to provide unique insights on a potential mechanistic link between altered intraluminal organic acids and fecal microbiota. DISCUSSION/SIGNIFICANCE OF IMPACT: Results may lead to development of targets for novel therapies and diagnostic biomarkers for IBS, emphasizing the role of the fecal metabolome.
Planets that orbit M-class dwarf stars in their habitable zones are expected to become tidally-locked in the first billion years of their history. Simulations of potentially habitable planets orbiting K and G-class stars also suggest that many will become tidally-locked or become pseudo-synchronous rotators in a similar time frame where certain criteria are fulfilled. Simple models suggest that such planets will experience climatic regions organized in broadly concentric bands around the sub-stellar point, where irradiation is maximal. Here, we develop some of the quantitative, as well as the qualitative impacts of such climate on the evolutionary potential of life on such worlds, incorporating the effects of topography and ocean currents on potential biological diversity. By comparing atmospheric circulation models with terrestrial circulation and biological diversity, we are able to construct viable thought models of biological potential. While we await the generation of atmospheric circulation models that incorporate topography and varying subaerial landscape, these models can be used as a starting point to determine the overall evolutionary potential of such worlds. The planets in these thought-models have significant differences in their distribution of habitability that may not be apparent from simple climate modelling.
‘Where is everybody?’ remarked Enrico Fermi, leading to the famous, and as yet unanswered ‘Fermi's Paradox’ as this remark has come to be known. While there are a number of possible solutions that vary from the distances are too great; the cost prohibitive or civilizations naturally decline or eliminate themselves before interstellar travel becomes possible, none of these are intellectually satisfying. More recently, Manasvi Lingam and Abraham Loeb suggested that for those planets orbiting red dwarfs, atmospheric erosion may be a partial solution to this ‘paradox’. Such planets may experience greater exposure to stellar winds and/or extreme ultraviolet and X-radiation (henceforth abbreviated to EUV). While this proposition is undeniably reasonable, it is likely incomplete. A more fundamental limitation on the development of biological complexity is imposed by plate tectonics: time. On asynchronously rotating planets, the habitable area for any species is defined by latitudinal bands that encompass the globe. Conversely, on synchronous rotators, the comparative habitable area is limited to broadly concentric regions surrounding the Sub-Stellar Point (SSP). Given that terrestrial mammals and from them humans evolved in tropical or subtropical regions, the geographical area subtended with these conditions is likely to be smaller and transected by suitable landmasses for shorter periods than on asynchronously rotating worlds. Habitable subaerial regions for individual species are therefore more limited in area. This leads to a greater limitation on the temporal intervals over which biological complexity can evolve.