We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The impact of chronic pain and opioid use on cognitive decline and mild cognitive impairment (MCI) is unclear. We investigated these associations in early older adulthood, considering different definitions of chronic pain.
Methods:
Men in the Vietnam Era Twin Study of Aging (VETSA; n = 1,042) underwent cognitive testing and medical history interviews at average ages 56, 62, and 68. Chronic pain was defined using pain intensity and interference ratings from the SF-36 over 2 or 3 waves (categorized as mild versus moderate-to-severe). Opioid use was determined by self-reported medication use. Amnestic and non-amnestic MCI were assessed using the Jak-Bondi approach. Mixed models and Cox proportional hazards models were used to assess associations of pain and opioid use with cognitive decline and risk for MCI.
Results:
Moderate-to-severe, but not mild, chronic pain intensity (β = −.10) and interference (β = −.23) were associated with greater declines in executive function. Moderate-to-severe chronic pain intensity (HR = 1.75) and interference (HR = 3.31) were associated with a higher risk of non-amnestic MCI. Opioid use was associated with a faster decline in verbal fluency (β = −.18) and a higher risk of amnestic MCI (HR = 1.99). There were no significant interactions between chronic pain and opioid use on cognitive decline or MCI risk (all p-values > .05).
Discussion:
Moderate-to-severe chronic pain intensity and interference related to executive function decline and greater risk of non-amnestic MCI; while opioid use related to verbal fluency decline and greater risk of amnestic MCI. Lowering chronic pain severity while reducing opioid exposure may help clinicians mitigate later cognitive decline and dementia risk.
We examined the association between influenza vaccination policies at acute care hospitals and influenza vaccination coverage among healthcare personnel for the 2021–22 influenza season. Mandatory vaccination and masking for unvaccinated personnel were associated with increased odds of vaccination. Hospital employees had higher vaccination coverage than licensed independent practitioners.
Birds possess the most diverse assemblage of haemosporidian parasites, although the true diversity is unknown due to high genetic diversity and insufficient sampling across all avian clades. Waterfowl (Order Anseriformes) are an ideal group to discover hidden parasite diversity and examine the role of host ecology in parasite transmission. Waterfowl contain 2 distinct feeding guilds, dabbling and diving, which differ in niche utilization that likely alters vector encounter rates and haemosporidian parasite risk. To determine the role of feeding guild in haemosporidian parasitism we analysed 223 blood samples collected by hunters from the upper Midwest of the United States from 2017 to 2019. Fifty-four individuals were infected by haemosporidian parasites (24·2% prevalence). Infection prevalence differed significantly between dabbling (34·9%, n = 109) and diving (14·0%, n = 114) ducks. Feeding guild was the only host trait that could predict haemosporidian infection risk, with a significantly higher risk in dabbling ducks. Twenty-four haemosporidian lineages were identified, with 9 identified for the first time. Thirteen lineages were found only in dabbling ducks, 5 only in diving ducks and 6 in both feeding guilds. Community analysis showed that each feeding guild harboured a unique parasite community. There was no phylogenetic signal of feeding guild within a phylogenetic reconstruction of North American waterfowl haemosporidian lineages. Our results demonstrate that waterfowl contain a diverse and distinct community of haemosporidian parasites. The unique composition of each feeding guild determines not only haemosporidian infection risk but also community structure. This is the first report of such an impact for waterfowl feeding guilds.
Psychological therapies can be effective in reducing symptoms of depression and anxiety in people living with dementia (PLWD). However, factors associated with better therapy outcomes in PLWD are currently unknown.
Aims
To investigate whether dementia-specific and non-dementia-specific factors are associated with therapy outcomes in PLWD.
Method
National linked healthcare records were used to identify 1522 PLWD who attended psychological therapy services across England. Associations between various factors and therapy outcomes were explored.
Results
People with frontotemporal dementia were more likely to experience reliable deterioration in depression/anxiety symptoms compared with people with vascular dementia (odds ratio 2.98, 95% CI 1.08–8.22; P = 0.03) or Alzheimer's disease (odds ratio 2.95, 95% CI 1.15–7.55; P = 0.03). Greater depression severity (reliable recovery: odds ratio 0.95, 95% CI 0.92–0.98, P < 0.001; reliable deterioration: odds ratio 1.73, 95% CI 1.04–2.90, P = 0.04), lower work and social functioning (recovery: odds ratio 0.98, 95% CI 0.96–0.99, P = 0.002), psychotropic medication use (recovery: odds ratio 0.67, 95% CI 0.51–0.90, P = 0.01), being of working age (recovery: odds ratio 2.03, 95% CI 1.10–3.73, P = 0.02) and fewer therapy sessions (recovery: odds ratio 1.12, 95% CI 1.09–1.16, P < 0.001) were associated with worse therapy outcomes in PLWD.
Conclusions
Dementia type was generally not associated with outcomes, whereas clinical factors were consistent with those identified for the general population. Additional support and adaptations may be required to improve therapy outcomes in PLWD, particularly in those who are younger and have more severe depression.
New technologies and disruptions related to Coronavirus disease-2019 have led to expansion of decentralized approaches to clinical trials. Remote tools and methods hold promise for increasing trial efficiency and reducing burdens and barriers by facilitating participation outside of traditional clinical settings and taking studies directly to participants. The Trial Innovation Network, established in 2016 by the National Center for Advancing Clinical and Translational Science to address critical roadblocks in clinical research and accelerate the translational research process, has consulted on over 400 research study proposals to date. Its recommendations for decentralized approaches have included eConsent, participant-informed study design, remote intervention, study task reminders, social media recruitment, and return of results for participants. Some clinical trial elements have worked well when decentralized, while others, including remote recruitment and patient monitoring, need further refinement and assessment to determine their value. Partially decentralized, or “hybrid” trials, offer a first step to optimizing remote methods. Decentralized processes demonstrate potential to improve urban-rural diversity, but their impact on inclusion of racially and ethnically marginalized populations requires further study. To optimize inclusive participation in decentralized clinical trials, efforts must be made to build trust among marginalized communities, and to ensure access to remote technology.
To examine temporal changes in coverage with a complete primary series of coronavirus disease 2019 (COVID-19) vaccination and staffing shortages among healthcare personnel (HCP) working in nursing homes in the United States before, during, and after the implementation of jurisdiction-based COVID-19 vaccination mandates for HCP.
Sample and setting:
HCP in nursing homes from 15 US jurisdictions.
Design:
We analyzed weekly COVID-19 vaccination data reported to the Centers for Disease Control and Prevention’s National Healthcare Safety Network from June 7, 2021, through January 2, 2022. We assessed 3 periods (preintervention, intervention, and postintervention) based on the announcement of vaccination mandates for HCP in 15 jurisdictions. We used interrupted time-series models to estimate the weekly percentage change in vaccination with complete primary series and the odds of reporting a staffing shortage for each period.
Results:
Complete primary series vaccination among HCP increased from 66.7% at baseline to 94.3% at the end of the study period and increased at the fastest rate during the intervention period for 12 of 15 jurisdictions. The odds of reporting a staffing shortage were lowest after the intervention.
Conclusions:
These findings demonstrate that COVID-19 vaccination mandates may be an effective strategy for improving HCP vaccination coverage in nursing homes without exacerbating staffing shortages. These data suggest that mandates can be considered to improve COVID-19 coverage among HCP in nursing homes to protect both HCP and vulnerable nursing home residents.
OBJECTIVES/GOALS: Rising rates of youth obesity, diabetes, depression, and anxiety necessitate programs that address physical and mental health concurrently. We describe a feasibility study for DiscoverU, an afterschool mentoring program that integrates multiple aspects of health including social emotional learning, physical activity, and mindful eating. METHODS/STUDY POPULATION: Trained college students mentored middle and high school students in a Midwestern school district. DiscoverU was delivered 2 hours, 2 days/week for 8 weeks. Based on self-determination theory, DiscoverU was designed to meet National Afterschool Association healthy eating and physical activity and social emotional learning standards. We assessed feasibility with participant attendance (middle, high school, and college students) and acceptability through qualitative data from participants and relevant stakeholders regarding facilitators/barriers to program implementation. We observed indicators of mentoring, lesson fidelity, and assessed physical activity using accelerometry. Pre-post surveys measured self-realization, self-regulation, mindful eating, and physical activity self-efficacy. RESULTS/ANTICIPATED RESULTS: We expect DiscoverU to be feasible and well accepted. We anticipate attendance will be similar or higher than that of other afterschool programs in the district. From focus groups we expect to hear a variety of factors that facilitate/prevent program engagement and learn about the acceptability of specific lessons. We expect to gain insight on processes and procedures from school stakeholders that will inform the sustainability of DiscoverU. We expect program fidelity to be high and mentoring skills to improve over the course of the program. We anticipate the majority of participants will meet National Afterschool Alliance physical activity guidelines. Preliminary outcomes of self-determination, self-regulation, mindful eating, and physical activity self-efficacy are expected to improve over the program. DISCUSSION/SIGNIFICANCE: Findings will help determine the readiness of DiscoverU to be scaled to other schools. A subsequent randomized effectiveness study will evaluate DiscoverU’s impact on intervention mechanisms (e.g., self-determination, self-efficacy) as well as on physical activity, diet, weight, and depression/anxiety symptomology.
Abnormal tau, a hallmark Alzheimer’s disease (AD) pathology, may appear in the locus coeruleus (LC) decades before AD symptom onset. Reports of subjective cognitive decline are also often present prior to formal diagnosis. Yet, the relationship between LC structural integrity and subjective cognitive decline has remained unexplored. Here, we aimed to explore these potential associations.
Methods:
We examined 381 community-dwelling men (mean age = 67.58; SD = 2.62) in the Vietnam Era Twin Study of Aging who underwent LC-sensitive magnetic resonance imaging and completed the Everyday Cognition scale to measure subjective cognitive decline along with their selected informants. Mixed models examined the associations between rostral-middle and caudal LC integrity and subjective cognitive decline after adjusting for depressive symptoms, physical morbidities, and family. Models also adjusted for current objective cognitive performance and objective cognitive decline to explore attenuation.
Results:
For participant ratings, lower rostral-middle LC contrast to noise ratio (LCCNR) was associated with significantly greater subjective decline in memory, executive function, and visuospatial abilities. For informant ratings, lower rostral-middle LCCNR was associated with significantly greater subjective decline in memory only. Associations remained after adjusting for current objective cognition and objective cognitive decline in respective domains.
Conclusions:
Lower rostral-middle LC integrity is associated with greater subjective cognitive decline. Although not explained by objective cognitive performance, such a relationship may explain increased AD risk in people with subjective cognitive decline as the LC is an important neural substrate important for higher order cognitive processing, attention, and arousal and one of the first sites of AD pathology.
Depression is an important, potentially modifiable dementia risk factor. However, it is not known whether effective treatment of depression through psychological therapies is associated with reduced dementia incidence. The aim of this study was to investigate associations between reduction in depressive symptoms following psychological therapy and the subsequent incidence of dementia.
Methods
National psychological therapy data were linked with hospital records of dementia diagnosis for 119808 people aged 65+. Participants received a course of psychological therapy treatment in Improving Access to Psychological Therapies (IAPT) services between 2012 and 2019. Cox proportional hazards models were run to test associations between improvement in depression following psychological therapy and incidence of dementia diagnosis up to eight years later.
Results
Improvements in depression following treatment were associated with reduced rates of dementia diagnosis up to 8 years later (HR = 0.88, 95% CI 0.83–0.94), after adjustment for key covariates. Strongest effects were observed for vascular dementia (HR = 0.86, 95% CI 0.77–0.97) compared with Alzheimer's disease (HR = 0.91, 95% CI 0.83–1.00).
Conclusions
Reliable improvement in depression across psychological therapy was associated with reduced incidence of future dementia. Results are consistent with at least two possibilities. Firstly, psychological interventions to improve symptoms of depression may have the potential to contribute to dementia risk reduction efforts. Secondly, psychological therapies may be less effective in people with underlying dementia pathology or they may be more likely to drop out of therapy (reverse causality). Tackling the under-representation of older people in psychological therapies and optimizing therapy outcomes is an important goal for future research.
We present the most sensitive and detailed view of the neutral hydrogen (${\rm H\small I}$) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal ${\rm H\small I}$ in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K ($1.6\,\mathrm{mJy\ beam}^{-1}$) $\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$ spectral channel with an angular resolution of $30^{\prime\prime}$ (${\sim}10\,\mathrm{pc}$). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire ${\sim}25\,\mathrm{deg}^2$ field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes ${\rm H\small I}$ test observations.
Many short gamma-ray bursts (GRBs) originate from binary neutron star mergers, and there are several theories that predict the production of coherent, prompt radio signals either prior, during, or shortly following the merger, as well as persistent pulsar-like emission from the spin-down of a magnetar remnant. Here we present a low frequency (170–200 MHz) search for coherent radio emission associated with nine short GRBs detected by the Swift and/or Fermi satellites using the Murchison Widefield Array (MWA) rapid-response observing mode. The MWA began observing these events within 30–60 s of their high-energy detection, enabling us to capture any dispersion delayed signals emitted by short GRBs for a typical range of redshifts. We conducted transient searches at the GRB positions on timescales of 5 s, 30 s, and 2 min, resulting in the most constraining flux density limits on any associated transient of 0.42, 0.29, and 0.084 Jy, respectively. We also searched for dispersed signals at a temporal and spectral resolution of 0.5 s and 1.28 MHz, but none were detected. However, the fluence limit of 80–100 Jy ms derived for GRB 190627A is the most stringent to date for a short GRB. Assuming the formation of a stable magnetar for this GRB, we compared the fluence and persistent emission limits to short GRB coherent emission models, placing constraints on key parameters including the radio emission efficiency of the nearly merged neutron stars ($\epsilon_r\lesssim10^{-4}$), the fraction of magnetic energy in the GRB jet ($\epsilon_B\lesssim2\times10^{-4}$), and the radio emission efficiency of the magnetar remnant ($\epsilon_r\lesssim10^{-3}$). Comparing the limits derived for our full GRB sample (along with those in the literature) to the same emission models, we demonstrate that our fluence limits only place weak constraints on the prompt emission predicted from the interaction between the relativistic GRB jet and the interstellar medium for a subset of magnetar parameters. However, the 30-min flux density limits were sensitive enough to theoretically detect the persistent radio emission from magnetar remnants up to a redshift of $z\sim0.6$. Our non-detection of this emission could imply that some GRBs in the sample were not genuinely short or did not result from a binary neutron star merger, the GRBs were at high redshifts, these mergers formed atypical magnetars, the radiation beams of the magnetar remnants were pointing away from Earth, or the majority did not form magnetars but rather collapse directly into black holes.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $\sim\!5$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim\!162$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $0.24\ \mathrm{mJy\ beam}^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
The North Carolina Legislature appropriated funds in 2016–2019 for the Healthy Food Small Retailer Program (HFSRP), providing small retailers located in food deserts with equipment to stock nutrient-dense foods and beverages. The study aimed to: (1) examine factors facilitating and constraining implementation of, and participation in, the HFSRP from the perspective of storeowners and (2) measure and evaluate the impact and effectiveness of investment in the HFSRP.
Design:
The current analysis uses both qualitative and quantitative assessments of storeowner perceptions and store outcomes, as well as two innovative measures of policy investment effectiveness. Qualitative semi-structured interviews and descriptive quantitative approaches, including monthly financial reports and activity forms, and end-of-programme evaluations were collected from participating HFSRP storeowners.
Setting:
Eight corner stores in North Carolina that participated in the two cohorts (2016–2018; 2017–2019) of the HFSRP.
Participants:
Owners of corner stores participating in the HFSRP.
Results:
All storeowners reported that the HFSRP benefitted their stores. In addition, the HFSRP had a positive impact on sales across each category of healthy food products. Storeowners reported that benefits would be enhanced with adjustments to programme administration and support. Specific suggestions included additional information regarding which healthy foods and beverages to stock; inventory management; handling of perishable produce; product display; modified reporting requirements and a more efficient process of delivering and maintaining equipment.
Conclusions:
All storeowners reported several benefits of the HFSRP and would recommend that other storeowners participate. The barriers and challenges they reported inform potential approaches to ensuring success and sustainability of the HFSRP and similar initiatives underway in other jurisdictions.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76–227 MHz of the entire southern sky (Declination $<\!{+}30^{\circ}$) with an angular resolution of ${\approx}2$ arcmin. In this paper, we combine GLEAM data with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1 590 local (median $z \approx 0.064$) radio sources with $S_{200\,\mathrm{MHz}} > 55$ mJy across an area of ${\approx}16\,700\,\mathrm{deg}^{2}$. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73% are fuelled by an active galactic nucleus (AGN) and 27% by star formation. We present the local radio luminosity function for AGN and star-forming (SF) galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and ${\sim}1$ GHz. For the AGN, the median spectral index between 200 MHz and ${\sim}1$ GHz, $\alpha_{\mathrm{high}}$, is $-0.600 \pm 0.010$ (where $S \propto \nu^{\alpha}$) and the median spectral index within the GLEAM band, $\alpha_{\mathrm{low}}$, is $-0.704 \pm 0.011$. For the SF galaxies, the median value of $\alpha_{\mathrm{high}}$ is $-0.650 \pm 0.010$ and the median value of $\alpha_{\mathrm{low}}$ is $-0.596 \pm 0.015$. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4% of local radio AGN have ultra-steep radio spectra at low frequencies ($\alpha_{\mathrm{low}} < -1.2$). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a $3\sigma$ persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in $3\sigma$ limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a $6\sigma$ fluence upper-limit range from 570 Jy ms at DM $=3\,000$ pc cm–3 ($z\sim 2.5$) to 1 750 Jy ms at DM$=200$ pc cm–3 ($z\sim 0.1)$, corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.
Late Cretaceous tracks attributable to deinonychosaurs in North America are rare, with only one occurrence of Menglongipus from Alaska and two possible, but indeterminate, occurrences reported from Mexico. Here we describe the first probable deinonychosaur tracks from Canada: a possible trackway and one isolated track on a single horizon from the Upper Cretaceous Wapiti Formation (upper Campanian) near Grande Prairie in Alberta. The presence of a relatively short digit IV differentiates these from argued dromaeosaurid tracks, suggesting the trackmaker was more likely a troodontid. Other noted characteristics of the Wapiti specimens include a rounded heel margin, the absence of a digit II proximal pad impression, and a broad, elliptical digit III. Monodactyl tracks occur in association with the didactyl tracks, mirroring similar discoveries from the Early Cretaceous Epoch of China, providing additional support for their interpretation as deinonychosaurian traces. Although we refrain from assigning the new Wapiti specimens to any ichnotaxon because of their relatively poor undertrack preservation, this discovery is an important addition to the deinonychosaur track record; it helps to fill a poorly represented geographic and temporal window in their known distribution, and demonstrates the presence of a greater North American deinonychosaur ichnodiversity than has previously been recognized.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$ 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.
We aimed to investigate the heterogeneity of seasonal suicide patterns among multiple geographically, demographically and socioeconomically diverse populations.
Methods
Weekly time-series data of suicide counts for 354 communities in 12 countries during 1986–2016 were analysed. Two-stage analysis was performed. In the first stage, a generalised linear model, including cyclic splines, was used to estimate seasonal patterns of suicide for each community. In the second stage, the community-specific seasonal patterns were combined for each country using meta-regression. In addition, the community-specific seasonal patterns were regressed onto community-level socioeconomic, demographic and environmental indicators using meta-regression.
Results
We observed seasonal patterns in suicide, with the counts peaking in spring and declining to a trough in winter in most of the countries. However, the shape of seasonal patterns varied among countries from bimodal to unimodal seasonality. The amplitude of seasonal patterns (i.e. the peak/trough relative risk) also varied from 1.47 (95% confidence interval [CI]: 1.33–1.62) to 1.05 (95% CI: 1.01–1.1) among 12 countries. The subgroup difference in the seasonal pattern also varied over countries. In some countries, larger amplitude was shown for females and for the elderly population (≥65 years of age) than for males and for younger people, respectively. The subperiod difference also varied; some countries showed increasing seasonality while others showed a decrease or little change. Finally, the amplitude was larger for communities with colder climates, higher proportions of elderly people and lower unemployment rates (p-values < 0.05).
Conclusions
Despite the common features of a spring peak and a winter trough, seasonal suicide patterns were largely heterogeneous in shape, amplitude, subgroup differences and temporal changes among different populations, as influenced by climate, demographic and socioeconomic conditions. Our findings may help elucidate the underlying mechanisms of seasonal suicide patterns and aid in improving the design of population-specific suicide prevention programmes based on these patterns.
We have detected 27 new supernova remnants (SNRs) using a new data release of the GLEAM survey from the Murchison Widefield Array telescope, including the lowest surface brightness SNR ever detected, G 0.1 – 9.7. Our method uses spectral fitting to the radio continuum to derive spectral indices for 26/27 candidates, and our low-frequency observations probe a steeper spectrum population than previously discovered. None of the candidates have coincident WISE mid-IR emission, further showing that the emission is non-thermal. Using pulsar associations we derive physical properties for six candidate SNRs, finding G 0.1 – 9.7 may be younger than 10 kyr. Sixty per cent of the candidates subtend areas larger than 0.2 deg2 on the sky, compared to < 25% of previously detected SNRs. We also make the first detection of two SNRs in the Galactic longitude range 220°–240°.