We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers $270 \,\mathrm{deg}^2$ of an area covered by the Dark Energy Survey, reaching a depth of 25–30 $\mu\mathrm{Jy\ beam}^{-1}$ rms at a spatial resolution of $\sim$11–18 arcsec, resulting in a catalogue of $\sim$220 000 sources, of which $\sim$180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
We aimed to investigate the heterogeneity of seasonal suicide patterns among multiple geographically, demographically and socioeconomically diverse populations.
Methods
Weekly time-series data of suicide counts for 354 communities in 12 countries during 1986–2016 were analysed. Two-stage analysis was performed. In the first stage, a generalised linear model, including cyclic splines, was used to estimate seasonal patterns of suicide for each community. In the second stage, the community-specific seasonal patterns were combined for each country using meta-regression. In addition, the community-specific seasonal patterns were regressed onto community-level socioeconomic, demographic and environmental indicators using meta-regression.
Results
We observed seasonal patterns in suicide, with the counts peaking in spring and declining to a trough in winter in most of the countries. However, the shape of seasonal patterns varied among countries from bimodal to unimodal seasonality. The amplitude of seasonal patterns (i.e. the peak/trough relative risk) also varied from 1.47 (95% confidence interval [CI]: 1.33–1.62) to 1.05 (95% CI: 1.01–1.1) among 12 countries. The subgroup difference in the seasonal pattern also varied over countries. In some countries, larger amplitude was shown for females and for the elderly population (≥65 years of age) than for males and for younger people, respectively. The subperiod difference also varied; some countries showed increasing seasonality while others showed a decrease or little change. Finally, the amplitude was larger for communities with colder climates, higher proportions of elderly people and lower unemployment rates (p-values < 0.05).
Conclusions
Despite the common features of a spring peak and a winter trough, seasonal suicide patterns were largely heterogeneous in shape, amplitude, subgroup differences and temporal changes among different populations, as influenced by climate, demographic and socioeconomic conditions. Our findings may help elucidate the underlying mechanisms of seasonal suicide patterns and aid in improving the design of population-specific suicide prevention programmes based on these patterns.
We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array’s performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope.
Mental health research funding priorities in high-income countries must balance longer-term investment in identifying neurobiological mechanisms of disease with shorter-term funding of novel prevention and treatment strategies to alleviate the current burden of mental illness. Prioritising one area of science over others risks reduced returns on the entire scientific portfolio.
Twin pairs discordant for disease may help elucidate the epigenetic mechanisms and causal environmental factors in disease development and progression. To obtain the numbers of pairs, especially monozygotic (MZ) twin pairs, necessary for in-depth studies while also allowing for replication, twin studies worldwide need to pool their resources. The Discordant Twin (DISCOTWIN) consortium was established for this goal. Here, we describe the DISCOTWIN Consortium and present an analysis of type 2 diabetes (T2D) data in nearly 35,000 twin pairs. Seven twin cohorts from Europe (Denmark, Finland, Norway, the Netherlands, Spain, Sweden, and the United Kingdom) and one from Australia investigated the rate of discordance for T2D in same-sex twin pairs aged 45 years and older. Data were available for 34,166 same-sex twin pairs, of which 13,970 were MZ, with T2D diagnosis based on self-reported diagnosis and medication use, fasting glucose and insulin measures, or medical records. The prevalence of T2D ranged from 2.6% to 12.3% across the cohorts depending on age, body mass index (BMI), and national diabetes prevalence. T2D discordance rate was lower for MZ (5.1%, range 2.9–11.2%) than for same-sex dizygotic (DZ) (8.0%, range 4.9–13.5%) pairs. Across DISCOTWIN, 720 discordant MZ pairs were identified. Except for the oldest of the Danish cohorts (mean age 79), heritability estimates based on contingency tables were moderate to high (0.47–0.77). From a meta-analysis of all data, the heritability was estimated at 72% (95% confidence interval 61–78%). This study demonstrated high T2D prevalence and high heritability for T2D liability across twin cohorts. Therefore, the number of discordant MZ pairs for T2D is limited. By combining national resources, the DISCOTWIN Consortium maximizes the number of discordant MZ pairs needed for in-depth genotyping, multi-omics, and phenotyping studies, which may provide unique insights into the pathways linking genes to the development of many diseases.
The Murchison Widefield Array is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array. We describe the automated radio-frequency interference detection strategy implemented for the Murchison Widefield Array, which is based on the aoflagger platform, and present 72–231 MHz radio-frequency interference statistics from 10 observing nights. Radio-frequency interference detection removes 1.1% of the data. Radio-frequency interference from digital TV is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After radio-frequency interference detection and excision, almost all data can be calibrated and imaged without further radio-frequency interference mitigation efforts, including observations within the FM and digital TV bands. The results are compared to a previously published Low-Frequency Array radio-frequency interference survey. The remote location of the Murchison Widefield Array results in a substantially cleaner radio-frequency interference environment compared to Low-Frequency Array’s radio environment, but adequate detection of radio-frequency interference is still required before data can be analysed. We include specific recommendations designed to make the Square Kilometre Array more robust to radio-frequency interference, including: the availability of sufficient computing power for radio-frequency interference detection; accounting for radio-frequency interference in the receiver design; a smooth band-pass response; and the capability of radio-frequency interference detection at high time and frequency resolution (second and kHz-scale respectively).
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
As we have noted before, the WG-IR was created following a Joint Commission Meeting at the IAU General Assembly in Baltimore in 1988, a meeting that provided both diagnosis and prescription for the perceived ailments of infrared photometry at the time. The results were summarized in Milone (1989). The challenges involve how to explain the failure to systematically achieve the milli-magnitude precision expected of infrared photometry and an apparent 3% limit on system transformability. The proposed solution was to re-define the broadband Johnson system, the passbands of which had proven so unsatisfactory that over time effectively different systems proliferated although bearing the same JHKLMNQ designations; the new system needed to be better positioned and centered in the atmospheric windows of the Earth's atmosphere, and the variable water vapour content of the atmosphere needed to be measured in real time to better correct for atmospheric extinction.
The WG-IR was created following a Joint Commission Meeting at the IAU General Assembly in Baltimore in 1988, a meeting that provided both diagnosis and prescription for the perceived ailments of infrared photometry at the time. The results were summarized in Milone (1989). The challenges involve how to explain the failure to systematically achieve the milli-magnitude precision expected of infrared photometry and an apparent 3% limit on system transformability. The proposed solution was to redefine the broadband Johnson system, the passbands of which had proven so unsatisfactory that over time effectively different systems proliferated although bearing the same JHKLMNQ designations; the new system needed to be better positioned and centered in the atmospheric windows of the Earth's atmosphere, and the variable water vapour content of the atmosphere needed to be measured in real time to better correct for atmospheric extinction.
Observations in the Chandra Deep Field South (CDFS) have provided us with a useful set of data in the optical (COMBO-17), near-infrared (GOODS JHK), and mid-infrared (GOODS IRAC bands 1,2) wavelength regimes to test and improve a new spectral galaxy template library, designed to operate in the rest-frame wavelength range between 0.1 and 5 microns. In this range the stellar continuum and emission lines from HII regions dominate the Spectral Energy Distribution (SED) of galaxies. The new library is based on a self-consistent two-burst model, that has been developed in order to reproduce the star formation histories of different types of galaxies more accurately than single-burst histories and thus provides a better match to real galaxy spectra, as well as more reliable mass-to-light ratios. The spectral library is built by using a population synthesis code (PEGASE) assuming a Kroupa (2003) initial mass function. An old burst of exponentially decaying star formation with an initial metallicity of 0.1 solar is followed by a very recent (60 Myr old) second burst in order to reproduce the spectra of actively star forming blue galaxies. In addition, the templates include dust extinction of various strengths. For the multi-color classification the spectral library is red-shifted between z + 0 and z + 2.5 and converted into the 21 colors which have been observed by COMBO-17 plus its near- and mid-infrared extensions provided by the public GOODS data.
Different magnesium incorporation behavior has been observed in heavily Mg-doped AlGaN epitaxial layers. The films were grown by metal-organic vapor phase epitaxy involving a lateral overgrowth technique on patterned sapphire substrates. TEM observations show that direct growth on sapphire exhibits pyramidal defects, while lateral overgrowth is homogeneous and free of structural defects. The orientation of the growth front significantly influences the microstructure, and the {0001} growth facet appears to be essential for the formation of the pyramidal defects. In addition, cylindrical and funnel-shaped nanopipes have been observed at dislocations with an edge component. The relationship between Mg segregation and these defects is discussed, and formation mechanisms are proposed taking into consideration the orientation of the growth front.
Measurement of accurate positions, pulse periods and period derivatives is an essential follow-up to any pulsar survey. The procedures being used to obtain timing parameters for the pulsars discovered in the Parkes multibeam pulsar survey are described. Completed solutions have been obtained so far for about 80 pulsars. They show that the survey is preferentially finding pulsars with higher than average surface dipole magnetic fields. Eight pulsars have been shown to be members of binary systems and some of the more interesting results relating to these are presented.
The Parkes multibeam pulsar survey uses a 13-element receiver operating at a wavelength of 20 cm to survey the inner Galactic plane with remarkable sensitivity. To date we have collected and analyzed data from 45% of the survey region (|b| < 5°; 260° < l < 50°), and have discovered 440 pulsars, in addition to re-detecting 190 previously known ones. Most of the newly discovered pulsars are at great distances, as inferred from a median dispersion measure (DM) of 400 cm−3 pc.
To study the epidemiology and preventability of blood contact with skin and mucous membranes during surgical procedures.
Design:
Observers present at 1,382 surgical procedures recorded information about the procedure, the personnel present, and the contacts that occurred.
Setting:
Four US teaching hospitals during 1990.
Participants:
Operating room personnel in five surgical specialties.
Main Outcome Measures:
Numbers and circumstances of contact between the patient's blood (or other infective fluids) and surgical personnel's mucous membranes (mucous membrane contacts) or skin (skin contacts, excluding percutaneous injuries).
Results:
A total of 1,069 skin (including 620 hand, 258 body, and 172 face) and 32 mucous membrane (all affecting eyes) contacts were observed. Surgeons sustained most contacts (19% had ≥1 skin contact and 0.5% had ≥1 mucous membrane-eye contact). Hand contacts were 72% lower among surgeons who double gloved, and face contacts were prevented reliably by face shields. Mucous membrane-eye contacts were significantly less frequent in surgeons wearing eyeglasses and were absent in surgeons wearing goggles or face shields. Among surgeons, risk factors for skin contact depended on the area of contact: hand contacts were associated most closely with procedure duration (adjusted odds ratio [OR], 9.4; ≥4 versus <1 hour); body contacts (arms, legs, and torso) with estimated blood losses (adjusted OR, 8.4; ≥1,000 versus <100 mL); and face contacts, with orthopedic service (adjusted OR, 7.5 compared with general surgery).
Conclusion:
Skin and mucous membrane contacts are preventable by appropriate barrier precautions, yet occur commonly during surgery. Surgeons who perform procedures similar to those included in this study should strongly consider double gloving, changing gloves routinely during surgery, or both.