We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Individuals with schizophrenia face high mortality risks. The effects of lipid-modifying agents on this risk remain understudied.
Aim
This study was conducted to investigate the effects of lipid-modifying agents on mortality risk in people with schizophrenia.
Method
This nationwide cohort study collected the data of people with schizophrenia from Taiwan's National Health Insurance Research Database for the period between 1 January 2001 and 31 December 2019. Multivariable Cox proportional hazards regression with a time-dependent model was used to estimate the hazard ratio for mortality associated with each lipid-modifying agent.
Results
This study included 110 300 people with schizophrenia. Of them, 22 528 died (19 754 from natural causes and 1606 from suicide) during the study period, as confirmed using data from Taiwan's national mortality database. The use of lipid-modifying agents was associated with reduced risks of all-cause (adjusted hazard ratio [aHR]:0.37; P < 0.001) and natural (aHR:0.37; P < 0.001) mortality during a 5-year period. Among the lipid-modifying agents, statins and fibrates were associated with reduced risks of all-cause mortality (aHRs:0.37 and 0.39, respectively; P < 0.001 for both) and natural mortality (aHRs: 0.37 and 0.42, respectively; P < 0.001 for both). Notably, although our univariate analysis indicated an association between the use of lipid-modifying agents and a reduced risk of suicide mortality, the multivariate analysis revealed no significant association.
Conclusions
Lipid-modifying agents, particularly statins and fibrates, reduce the risk of mortality in people with schizophrenia. Appropriate use of lipid-modifying agents may bridge the mortality gap between these individuals and the general population.
To evaluate the mental health of paediatric cochlear implant users and analyse the relationship between six dimensions (movements, cognitive ability, emotion and will, sociality, living habits and language) and hearing and speech rehabilitation.
Methods
Eighty-two cochlear implant users were assessed using the Mental Health Survey Questionnaire. Age at implantation, time of implant use and listening modes were investigated. Categories of Auditory Performance and the Speech Intelligibility Rating Scale were used to score hearing and speech abilities.
Results
More recipients scored lower in cognitive ability and language. Age at implantation was statistically significant (p < 0.05) for movements, cognitive ability, emotion and will, and language. The time of implant usage and listening mode indicated statistical significance (p < 0.05) in cognitive ability, sociality and language.
Conclusion
Timely attention should be paid to the mental health of paediatric cochlear implant users, and corresponding psychological interventions should be implemented to make personalised rehabilitation plans.
Numerous technologies have contributed to the recent development of agriculture, especially the advancement in hyperspectral remote sensing (HRS) constituted a revolution in crop monitoring. The widespread use of HRS to obtain crop parameters suggests the need for a review of research advances in this area. HRS offers new theories and methods for studying crop parameters, but much work needs to be done both experimentally and theoretically before we can truly understand the physical and chemical processes that predict these crop parameters. The study focuses on the following elements: 1) The article provides a relatively comprehensive introduction to HRS and how it can be applied to crop monitoring; 2) Current state-of-the-art techniques are summarized and analyzed to inform further advances in crop monitoring; 3) Opportunities and challenges for crop monitoring applications using HRS are discussed, and future research is summarized. Finally, through a comprehensive discussion and analysis, the article proposes new directions for using HRS to study crop characteristics, such as new data mining techniques including deep learning provide opportunities for efficient processing of large amounts of HRS data; combining the temporal and dynamic characteristics of crop parameters and vegetation growth processes will greatly improve the accuracy of crop parameter detection and monitoring; multidata fusion and multiscale data assimilation will become HRS monitoring. Multidata fusion and multiscale data assimilation will become another research hotspot for HRS monitoring of crop parameters.
Neuroinflammation and brain structural abnormalities are found in bipolar disorder (BD). Elevated levels of cytokines and chemokines have been detected in the serum and cerebrospinal fluid of patients with BD. This study investigated the association between peripheral inflammatory markers and brain subregion volumes in BD patients.
Methods:
Euthymic patients with bipolar I disorder (BD-I) aged 20–45 years underwent whole-brain magnetic resonance imaging. Plasma levels of monocyte chemoattractant protein-1 (MCP-1), chitinase-3-like protein 1 (also known as YKL-40), fractalkine (FKN), soluble tumour necrosis factor receptor-1 (sTNF-R1), interleukin-1β, and transforming growth factor-β1 were measured on the day of neuroimaging. Clinical data were obtained from medical records and interviewing patients and reliable others.
Results:
We recruited 31 patients with a mean age of 29.5 years. In multivariate regression analysis, plasma level YKL-40, a chemokine, was the most common inflammatory marker among these measurements displaying significantly negative association with the volume of various brain subareas across the frontal, temporal, and parietal lobes. Higher YKL-40 and sTNF-R1 levels were both significantly associated with lower volumes of the left anterior cingulum, left frontal lobe, right superior temporal gyrus, and supramarginal gyrus. A greater number of total lifetime mood episodes were also associated with smaller volumes of the right caudate nucleus and bilateral frontal lobes.
Conclusions:
The volume of brain regions known to be relevant to BD-I may be diminished in relation to higher plasma level of YKL-40, sTNF-R1, and more lifetime mood episodes. Macrophage and macrophage-like cells may be involved in brain volume reduction among BD-I patients.
A higher dietary intake or serum concentration of betaine has been associated with greater lean body mass in middle-aged and older adults. However, it remains unknown whether betaine intake is associated with age-related loss of skeletal muscle mass (SMM). We assessed the association between dietary betaine intake and relative changes in SMM after 3 years in middle-aged adults. A total of 1242 participants aged 41–60 years from the Guangzhou Nutrition and Health Study 2011–2013 and 2014–2017 with body composition measurements by dual-energy X-ray absorptiometry were included. A face-to-face questionnaire was used to collect general baseline information. After adjustment for potential confounders, multiple linear regression found that energy-adjusted dietary betaine intake was significantly and positively associated with relative changes (i.e. percentage loss or increase) in SMM of legs, limbs and appendicular skeletal mass index (ASMI) over 3 years of follow-up (β 0·322 (se 0·157), 0·309 (se 0·142) and 0·303 (se 0·145), respectively; P < 0·05). The ANCOVA models revealed that participants in the highest betaine tertile had significantly less loss in SMM of limbs and ASMI and more increase in SMM of legs over 3 years of follow-up, compared with those in the bottom betaine tertile (all Ptrend < 0·05). In conclusion, our findings suggest that elevated higher dietary betaine intake may be associated with less loss of SMM of legs, limbs and ASMI in middle-aged adults.
Obstacle avoidance is an important issue in robotics. In this paper, the particleswarm optimization (PSO) algorithm, which is inspired by the collectivebehaviors of birds, has been designed for solving the obstacle avoidanceproblem. Some animals that travel to the different places at a specific time ofthe year are called migrants. The migrants also represent the particles of PSOfor defining the walking paths in this work. Migrants consider not only thecollective behaviors, but also geomagnetic fields during their migration innature. Therefore, in order to improve the performance and the convergence speedof the PSO algorithm, concepts from the migrant navigation method have beenadopted for use in the proposed hybrid particle swarm optimization (H-PSO)algorithm. Moreover, the potential field navigation method and the designedfuzzy logic controller have been combined in H-PSO, which provided a goodperformance in the simulation and the experimental results. Finally, theFederation of International Robot-soccer Association (FIRA) HuroCup Obstacle RunEvent has been chosen for validating the feasibility and the practicability ofthe proposed method in real time. The designed adult-sized humanoid robot alsoperformed well in the 2015 FIRA HuroCup Obstacle Run Event through utilizing theproposed H-PSO.
The present study was conducted to evaluate the anti-parasitic activity of a pure compound from Streptomyces sp. HL-2-14 against fish parasite Ichthyophthirius multifiliis, and elucidate its chemical structure. By electron ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectrum (1H NMR and 13C NMR), the compound was identified as amphotericin B (AmB). The in vitro trials revealed that AmB can effectively kill the theronts and tomonts of I. multifiliis with the median lethal concentration (LC50) of 0·8 mg L−1 at 30 min for the theronts and 4·3 mg L−1 at 2 h for the tomonts, respectively. AmB at 5 mg L−1 significantly reduced I. multifiliis infectivity prevalence and intensity on grass carp (Ctenopharyngodon idella), and consequently decreased fish mortality, from 100% in control group to 30% in treated group. The 72 h acute toxicity (LC50) of AmB on grass carp was 20·6 mg L−1, but fish mortality was occurred when exposure to 13·0 mg L−1. These results indicated that AmB was effective in the therapy of I. multifiliis infection, but the safety concentration margin is relatively narrow. Further efforts aiming to decrease the toxicity and improve the therapeutic profile remain to be needed.
Gold species on an oxide support possess variable electronic structures via charge transition so as to increase their chemical redox activity. They are also viably promising for use to enhance gas-sensing response when being exploited in a solid state gas sensor. The synthesis method of the gold-loaded materials plays a crucial role in the functionality. In this paper, we report two types of gold/tin oxide based nanopowders prepared by co-precipitation method and by deposition-precipitation method, respectively. They were evaluated as sensing elements in a semiconductor carbon monoxide (CO) gas sensor. Effects of the material type and CO concentration on sensor response were investigated. Their structural characterizations were done by X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy. Results demonstrate the surface gold species effective to facilitate CO oxidation in gas atmosphere and promote low-temperature sensor performance.
from
Section 3
-
Involvement of Magnesium in Psychiatric Diseases
By
Dehua Chui, Neuroscience Research Institute & Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education & Ministry of Public Health, Health Science Center, Peking University, Beijing 100191, China,
Zheng Chen, Department of Psychiatry & Institute for Geriatric Clinic and Rehabilitation, Beijing Geriatric Hospital, Beijing 100095, China,
Jia Yu, Department of Psychiatry & Institute for Geriatric Clinic and Rehabilitation, Beijing Geriatric Hospital, Beijing 100095, China,
Honglin Zhang, Department of Psychiatry & Institute for Geriatric Clinic and Rehabilitation, Beijing Geriatric Hospital, Beijing 100095, China,
Weishan Wang, Department of Psychiatry & Institute for Geriatric Clinic and Rehabilitation, Beijing Geriatric Hospital, Beijing 100095, China,
Yuetao Song, Department of Psychiatry & Institute for Geriatric Clinic and Rehabilitation, Beijing Geriatric Hospital, Beijing 100095, China,
Huan Yang, Neuroscience Research Institute & Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education & Ministry of Public Health, Health Science Center, Peking University, Beijing 100191, China,
Yi Liu, Neuroscience Research Institute & Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education & Ministry of Public Health, Health Science Center, Peking University, Beijing 100191, China
Edited by
Robert Vink, University of Adelaide,Mihai Nechifor, University of Medicine and Pharmacy, Iasi, Romania
Alzheimer's disease (AD) is the most common form of dementia. It is characterized by a progressive cognitive impairment clinically, and excessive deposits of aggregated amyloid-β (Aβ) peptides pathologically. Environmental factors, including nutrition and metal elements, are implicated in the pathophysiology of AD. Magnesium (Mg) affects many biochemical mechanisms vital for neuronal properties and synaptic plasticity, including the response of N-methyl D-aspartate (NMDA) receptors to excitatory amino acids, stability and viscosity of the cell membrane and antagonism of calcium. Mg levels were found decreased in various tissues of AD patients and negatively correlated with clinical deterioration. Moreover, Mg was demonstrated to modulate the trafficking and processing of amyloid-β precursor protein (APP), which plays a central role in the pathogenesis of AD. Here, we review in vitro and in vivo data that indicated a role for magnesium in many biological and clinical aspects of AD.
Alzheimer's disease
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in elderly people, affecting approximate 6∼8% of all individuals over the age of 65 years. AD is characterized by progressive cognitive impairment and distinct neuropathological lesions in the brain, including intracellular neurofibrillary tangles, extracellular parenchymal and cerebrovascular senile plaques (Braak and Braak, 1991).