We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the serendipitous radio-continuum discovery of a likely Galactic supernova remnant (SNR) G305.4–2.2. This object displays a remarkable circular symmetry in shape, making it one of the most circular Galactic SNRs known. Nicknamed Teleios due to its symmetry, it was detected in the new Australian Square Kilometre Array Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) radio–continuum images with an angular size of 1 320$^{\prime\prime}$$\times$1 260$^{\prime\prime}$ and PA = 0$^\circ$. While there is a hint of possible H$\alpha$ and gamma-ray emission, Teleios is exclusively seen at radio–continuum frequencies. Interestingly, Teleios is not only almost perfectly symmetric, but it also has one of the lowest surface brightnesses discovered among Galactic SNRs and a steep spectral index of $\alpha$=–0.6$\pm$0.3. Our best estimates from Hi studies and the $\Sigma$–D relation place Teleios as a type Ia SNR at a distance of either $\sim$2.2 kpc (near-side) or $\sim$7.7 kpc (far-side). This indicates two possible scenarios, either a young (under 1 000 yr) or a somewhat older SNR (over 10 000 yr). With a corresponding diameter of 14/48 pc, our evolutionary studies place Teleios at the either early or late Sedov phase, depending on the distance/diameter estimate. However, our modelling also predicts X-ray emission, which we do not see in the present generation of eROSITA images. We also explored a type Iax explosion scenario that would point to a much closer distance of $\lt$1 kpc and Teleios size of only $\sim$3.3 pc, which would be similar to the only known type Iax remnant SN1181. Unfortunately, all examined scenarios have their challenges, and no definitive Supernova (SN) origin type can be established at this stage. Remarkably, Teleios has retained its symmetrical shape as it aged even to such a diameter, suggesting expansion into a rarefied and isotropic ambient medium. The low radio surface brightness and the lack of pronounced polarisation can be explained by a high level of ambient rotation measure (RM), with the largest RM being observed at Teleios’s centre.
The advent of next-generation telescope facilities brings with it an unprecedented amount of data, and the demand for effective tools to process and classify this information has become increasingly important. This work proposes a novel approach to quantify the radio galaxy morphology, through the development of a series of algorithmic metrics that can quantitatively describe the structure of radio source, and can be applied to radio images in an automatic way. These metrics are intuitive in nature and are inspired by the intrinsic structural differences observed between the existing Fanaroff-Riley (FR) morphology types. The metrics are defined in categories of asymmetry, blurriness, concentration, disorder, and elongation (ABCDE/single-lobe metrics), as well as the asymmetry and angle between lobes (source metrics). We apply these metrics to a sample of 480 sources from the Evolutionary Map of the Universe Pilot Survey (EMU-PS) and 72 well resolved extensively studied sources from An Atlas of DRAGNs, a subset of the revised Third Cambridge Catalogue of Radio Sources (3CRR). We find that these metrics are relatively robust to resolution changes, independent of each other, and measure fundamentally different structural components of radio galaxy lobes. These metrics work particularly well for sources with reasonable signal-to-noise and well separated lobes. We also find that we can recover the original FR classification using probabilistic combinations of our metrics, highlighting the usefulness of our approach for future large data sets from radio sky surveys.
Background: Late-onset Pompe disease (LOPD) is caused by a deficiency of acid α-glucosidase (GAA), leading to progressive muscle and respiratory decline. Cipaglucosidase alfa (cipa), a recombinant human GAA naturally enriched with bis-mannose-6-phosphate, exhibits improved muscle uptake but is limited by inactivation at near-neutral blood pH. Miglustat (mig), an enzyme stabiliser, binds competitively and reversibly to cipa, enhancing its stability and activity. Methods: In dose-finding studies, Gaa-/- mice were treated with cipa (20 mg/kg) +/- mig (10 mg/kg; equivalent human dose ~260 mg). Clinical study methodologies have been published (Schoser et al. Lancet Neurol 2021:20;1027–37; Schoser et al. J Neurol 2024:271;2810–23). Results: In Gaa-/- mice, cipa+mig improved muscle glycogen reduction more than cipa alone and grip strength to levels approaching wild-type mice. LOPD patients (n=11) treated with cipa alone showed dose-dependent decreases in hexose tetrasaccharide (Hex4) levels by ~15% from baseline, decreasing another ~10% with added mig (260 mg). In a head-to-head study, cipa+mig had a similar safety profile to alglucosidase alfa. Among 151 patients (three trials), mig-related adverse events occurred in 21 (13.9%), none serious. Conclusions: Mig stabilised cipa in circulation, improving cipa exposure, further reducing Hex4 levels and was well tolerated in clinical studies in patients with LOPD. Sponsored by Amicus Therapeutics, Inc.
We report the radio continuum detection of well known Galactic Planetary Nebula (PN) NGC5189, observed at 943MHz during the Australian Square Kilometre Array Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) survey. Two detections of NGC5189 have been made during the survey, of better resolution than previous radio surveys. Both measurements of the integrated flux density are consistent with each other, at S943 MHz = 0.33 ± 0.03 Jy, and the spectral luminosity is L943 MHz = 8.89 × 1013 W m–2 Hz–1. Using available flux density measurements for radio-detections of NGC5189, we calculate a radio surface brightness at 1GHz and measure Σ1 GHz = 6.0 × 10–21 W m–2 Hz–1 sr–1, which is in the expected range for Galactic PNe. We measure an apparent size of 3.′4×2.′2 corresponding to physical diameters of 1.48 pc × 0.96 pc, and combine available radio observations of NGC5189 to estimate a spectral index of α = 0.12 ± 0.05. Hence, we agree with previous findings that NGC5189 is a thermal (free–free) emitting nebula. Additional measurements of the optical depth (τ = 0.00246) and electron density (Ne = 138 cm–3) support our findings that NGC5189 is optically thin at 943 MHz. Furthermore, the radio contours from the ASKAP–EMU image have been overlaid onto a Hubble Space Telescope (HST) Wide Field Camera 3 image, demonstrating that the radio morphology closely traces the optical. Notably, the contour alignment for the innermost region highlights the two envelopes of gas previously reported to be low-ionisation structures, which is considered a defining feature of post common–envelope PNe that surround a central Wolf-Rayet star.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
Edited by
David Mabey, London School of Hygiene and Tropical Medicine,Martin W. Weber, World Health Organization,Moffat Nyirenda, London School of Hygiene and Tropical Medicine,Dorothy Yeboah-Manu, Noguchi Memorial Institute for Medical Research, University of Ghana,Jackson Orem, Uganda Cancer Institute, Kampala,Laura Benjamin, University College London,Michael Marks, London School of Hygiene and Tropical Medicine,Nicholas A. Feasey, Liverpool School of Tropical Medicine
Fever is one of the most common reasons for seeking medical care. The patient may complain of fever (feeling hot), or of symptoms resulting from fever, such as headache or general body pain. Most, but not all, cases will be due to infections. This chapter details the assessment and management of adult patients that present with fever. See Chapter 9 for the management of the febrile child.
Inflammation and infections such as malaria affect concentrations of many micronutrient biomarkers and hence estimates of nutritional status. We aimed to assess the relationship between malaria infection and micronutrient biomarker concentrations in pre-school children (PSC), school-age children (SAC) and women of reproductive age (WRA) in Malawi and examine the potential role of malarial immunity on the relationship between malaria and micronutrient biomarkers. Data from the 2015/2016 Malawi micronutrient survey were used. The associations between current or recent malaria infection, detected by rapid diagnostic test and concentration of serum ferritin, soluble transferrin receptor (sTfR), zinc, serum folate, red blood cell folate and vitamin B12 were estimated using multivariable linear regression. Factors related to malarial immunity including age, altitude and presence of hemoglobinopathies were examined as effect modifiers. Serum ferritin, sTfR and zinc were adjusted for inflammation using the BRINDA method. Malaria infection was associated with 68 % (95 % CI 51, 86), 28 % (18, 40) and 34 % (13, 45) greater inflammation-adjusted ferritin in PSC, SAC and WRA, respectively (P < 0·001 for each). In PSC, the positive association was stronger in younger children, high altitude and children who were not carriers of the sickle cell trait. In PSC and SAC, sTfR was elevated (+ 25 % (16, 29) and + 15 % (9, 22) respectively, P < 0·001). Serum folate and erythrocyte folate were elevated in WRA with malaria (+ 18 % (3, 35) and + 11 % (1, 23), P = 0·01 and P = 0·003 respectively). Malaria affects the interpretation of micronutrient biomarker concentrations, and examining factors related to malarial immunity may be informative.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
Inflammation and infections such as malaria affect micronutrient biomarker concentrations and hence estimates of nutritional status. It is unknown whether correction for C-reactive protein (CRP) and α1-acid glycoprotein (AGP) fully captures the modification in ferritin concentrations during a malaria infection, or whether environmental and sociodemographic factors modify this association. Cross-sectional data from eight surveys in children aged 6–59 months (Cameroon, Cote d’Ivoire, Kenya, Liberia, Malawi, Nigeria and Zambia; n 6653) from the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anaemia (BRINDA) project were pooled. Ferritin was adjusted using the BRINDA adjustment method, with values < 12 μg/l indicating iron deficiency. The association between current or recent malaria infection, detected by microscopy or rapid test kit, and inflammation-adjusted ferritin was estimated using pooled multivariable linear regression. Age, sex, malaria endemicity profile (defined by the Plasmodium falciparum infection prevalence) and malaria diagnostic methods were examined as effect modifiers. Unweighted pooled malaria prevalence was 26·0 % (95 % CI 25·0, 27·1) and unweighted pooled iron deficiency was 41·9 % (95 % CI 40·7, 43·1). Current or recent malaria infection was associated with a 44 % (95 % CI 39·0, 52·0; P < 0·001) increase in inflammation-adjusted ferritin after adjusting for age and study identifier. In children, ferritin increased less with malaria infection as age and malaria endemicity increased. Adjustment for malaria increased the prevalence of iron deficiency, but the effect was small. Additional information would help elucidate the underlying mechanisms of the role of endemicity and age in the association between malaria and ferritin.
We present radio observations of the galaxy cluster Abell S1136 at 888 MHz, using the Australian Square Kilometre Array Pathfinder radio telescope, as part of the Evolutionary Map of the Universe Early Science program. We compare these findings with data from the Murchison Widefield Array, XMM-Newton, the Wide-field Infrared Survey Explorer, the Digitised Sky Survey, and the Australia Telescope Compact Array. Our analysis shows the X-ray and radio emission in Abell S1136 are closely aligned and centered on the Brightest Cluster Galaxy, while the X-ray temperature profile shows a relaxed cluster with no evidence of a cool core. We find that the diffuse radio emission in the centre of the cluster shows more structure than seen in previous low-resolution observations of this source, which appeared formerly as an amorphous radio blob, similar in appearance to a radio halo; our observations show the diffuse emission in the Abell S1136 galaxy cluster contains three narrow filamentary structures visible at 888 MHz, between $\sim$80 and 140 kpc in length; however, the properties of the diffuse emission do not fully match that of a radio (mini-)halo or (fossil) tailed radio source.
We present source detection and catalogue construction pipelines to build the first catalogue of radio galaxies from the 270 $\rm deg^2$ pilot survey of the Evolutionary Map of the Universe (EMU-PS) conducted with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The detection pipeline uses Gal-DINO computer vision networks (Gupta et al. 2024, PASA, 41, e001) to predict the categories of radio morphology and bounding boxes for radio sources, as well as their potential infrared host positions. The Gal-DINO network is trained and evaluated on approximately 5 000 visually inspected radio galaxies and their infrared hosts, encompassing both compact and extended radio morphologies. We find that the Intersection over Union (IoU) for the predicted and ground-truth bounding boxes is larger than 0.5 for 99% of the radio sources, and 98% of predicted host positions are within $3^{\prime \prime}$ of the ground-truth infrared host in the evaluation set. The catalogue construction pipeline uses the predictions of the trained network on the radio and infrared image cutouts based on the catalogue of radio components identified using the Selavy source finder algorithm. Confidence scores of the predictions are then used to prioritise Selavy components with higher scores and incorporate them first into the catalogue. This results in identifications for a total of 211 625 radio sources, with 201 211 classified as compact and unresolved. The remaining 10 414 are categorised as extended radio morphologies, including 582 FR-I, 5 602 FR-II, 1 494 FR-x (uncertain whether FR-I or FR-II), 2 375 R (single-peak resolved) radio galaxies, and 361 with peculiar and other rare morphologies. Each source in the catalogue includes a confidence score. We cross-match the radio sources in the catalogue with the infrared and optical catalogues, finding infrared cross-matches for 73% and photometric redshifts for 36% of the radio galaxies. The EMU-PS catalogue and the detection pipelines presented here will be used towards constructing catalogues for the main EMU survey covering the full southern sky.
We demonstrate the importance of radio selection in probing heavily obscured galaxy populations. We combine Evolutionary Map of the Universe (EMU) Early Science data in the Galaxy and Mass Assembly (GAMA) G23 field with the GAMA data, providing optical photometry and spectral line measurements, together with Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry, providing IR luminosities and colours. We investigate the degree of obscuration in star-forming galaxies, based on the Balmer decrement (BD), and explore how this trend varies, over a redshift range of $0<z<0.345$. We demonstrate that the radio-detected population has on average higher levels of obscuration than the parent optical sample, arising through missing the lowest BD and lowest mass galaxies, which are also the lower star formation rate (SFR) and metallicity systems. We discuss possible explanations for this result, including speculation around whether it might arise from steeper stellar initial mass functions in low mass, low SFR galaxies.
To explore the role environment plays in influencing galaxy evolution at high redshifts, we study $2.0\leq z<4.2$ environments using the FourStar Galaxy Evolution (ZFOURGE) survey. Using galaxies from the COSMOS legacy field with ${\rm log(M_{*}/M_{\odot})}\geq9.5$, we use a seventh nearest neighbour density estimator to quantify galaxy environment, dividing this into bins of low-, intermediate-, and high-density. We discover new high-density environment candidates across $2.0\leq z<2.4$ and $3.1\leq z<4.2$. We analyse the quiescent fraction, stellar mass and specific star formation rate (sSFR) of our galaxies to understand how these vary with redshift and environment. Our results reveal that, across $2.0\leq z<2.4$, the high-density environments are the most significant regions, which consist of elevated quiescent fractions, ${\rm log(M_{*}/M_{\odot})}\geq10.2$ massive galaxies and suppressed star formation activity. At $3.1\leq z<4.2$, we find that high-density regions consist of elevated stellar masses but require more complete samples of quiescent and sSFR data to study the effects of environment in more detail at these higher redshifts. Overall, our results suggest that well-evolved, passive galaxies are already in place in high-density environments at $z\sim2.4$, and that the Butcher–Oemler effect and SFR-density relation may not reverse towards higher redshifts as previously thought.
We present a comparison between the performance of a selection of source finders (SFs) using a new software tool called Hydra. The companion paper, Paper I, introduced the Hydra tool and demonstrated its performance using simulated data. Here we apply Hydra to assess the performance of different source finders by analysing real observational data taken from the Evolutionary Map of the Universe (EMU) Pilot Survey. EMU is a wide-field radio continuum survey whose primary goal is to make a deep ($20\mu$Jy/beam RMS noise), intermediate angular resolution ($15^{\prime\prime}$), 1 GHz survey of the entire sky south of $+30^{\circ}$ declination, and expecting to detect and catalogue up to 40 million sources. With the main EMU survey it is highly desirable to understand the performance of radio image SF software and to identify an approach that optimises source detection capabilities. Hydra has been developed to refine this process, as well as to deliver a range of metrics and source finding data products from multiple SFs. We present the performance of the five SFs tested here in terms of their completeness and reliability statistics, their flux density and source size measurements, and an exploration of case studies to highlight finder-specific limitations.
The latest generation of radio surveys are now producing sky survey images containing many millions of radio sources. In this context it is highly desirable to understand the performance of radio image source finder (SF) software and to identify an approach that optimises source detection capabilities. We have created Hydra to be an extensible multi-SF and cataloguing tool that can be used to compare and evaluate different SFs. Hydra, which currently includes the SFs Aegean, Caesar, ProFound, PyBDSF, and Selavy, provides for the addition of new SFs through containerisation and configuration files. The SF input RMS noise and island parameters are optimised to a 90% ‘percentage real detections’ threshold (calculated from the difference between detections in the real and inverted images), to enable comparison between SFs. Hydra provides completeness and reliability diagnostics through observed-deep ($\mathcal{D}$) and generated-shallow ($\mathcal{S}$) images, as well as other statistics. In addition, it has a visual inspection tool for comparing residual images through various selection filters, such as S/N bins in completeness or reliability. The tool allows the user to easily compare and evaluate different SFs in order to choose their desired SF, or a combination thereof. This paper is part one of a two part series. In this paper we introduce the Hydra software suite and validate its $\mathcal{D/S}$ metrics using simulated data. The companion paper demonstrates the utility of Hydra by comparing the performance of SFs using both simulated and real images.
We present a set of peculiar radio sources detected using an unsupervised machine learning method. We use data from the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to train a self-organizing map (SOM). The radio maps from three ASKAP surveys, Evolutionary Map of Universe pilot survey (EMU-PS), Deep Investigation of Neutral Gas Origins pilot survey (DINGO), and Survey With ASKAP of GAMA-09 + X-ray (SWAG-X), are used to search for the rarest or unknown radio morphologies. We use an extension of the SOM algorithm that implements rotation and flipping invariance on astronomical sources. The SOM is trained using the images of all ‘complex’ radio sources in the EMU-PS which we define as all sources catalogued as ‘multi-component’. The trained SOM is then used to estimate a similarity score for complex sources in all surveys. We select 0.5% of the sources that are most complex according to the similarity metric and visually examine them to find the rarest radio morphologies. Among these, we find two new odd radio circle (ORC) candidates and five other peculiar morphologies. We discuss multiwavelength properties and the optical/infrared counterparts of selected peculiar sources. In addition, we present examples of conventional radio morphologies including: diffuse emission from galaxy clusters, and resolved, bent-tailed, and FR-I and FR-II type radio galaxies. We discuss the overdense environment that may be the reason behind the circular shape of ORC candidates.
Inflammation and infections such as malaria affect estimates of micronutrient status. Medline, Embase, Web of Science, Scopus and the Cochrane library were searched to identify studies reporting mean concentrations of ferritin, hepcidin, retinol or retinol binding protein in individuals with asymptomatic or clinical malaria and healthy controls. Study quality was assessed using the US National Institute of Health tool. Random effects meta-analyses were used to generate summary mean differences. In total, forty-four studies were included. Mean ferritin concentrations were elevated by: 28·2 µg/l (95 % CI 15·6, 40·9) in children with asymptomatic malaria; 28·5 µg/l (95 % CI 8·1, 48·8) in adults with asymptomatic malaria; and 366 µg/l (95 % CI 162, 570) in children with clinical malaria compared with individuals without malaria infection. Mean hepcidin concentrations were elevated by 1·52 nmol/l (95 % CI 0·92, 2·11) in children with asymptomatic malaria. Mean retinol concentrations were reduced by: 0·11 µmol/l (95 % CI −0·22, −0·01) in children with asymptomatic malaria; 0·43 µmol/l (95 % CI −0·71, −0·16) in children with clinical malaria and 0·73 µmol/l (95 % CI −1·11, −0·36) in adults with clinical malaria. Most of these results were stable in sensitivity analyses. In children with clinical malaria and pregnant women, difference in ferritin concentrations were greater in areas with higher transmission intensity. We conclude that biomarkers of iron and vitamin A status should be statistically adjusted for malaria and the severity of infection. Several studies analysing asymptomatic infections reported elevated ferritin concentrations without noticeable elevation of inflammation markers, indicating a need to adjust for malaria status in addition to inflammation adjustments.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers $270 \,\mathrm{deg}^2$ of an area covered by the Dark Energy Survey, reaching a depth of 25–30 $\mu\mathrm{Jy\ beam}^{-1}$ rms at a spatial resolution of $\sim$11–18 arcsec, resulting in a catalogue of $\sim$220 000 sources, of which $\sim$180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
We have found a class of circular radio objects in the Evolutionary Map of the Universe Pilot Survey, using the Australian Square Kilometre Array Pathfinder telescope. The objects appear in radio images as circular edge-brightened discs, about one arcmin diameter, that are unlike other objects previously reported in the literature. We explore several possible mechanisms that might cause these objects, but none seems to be a compelling explanation.