We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Objectives/Goals: Trainees in clinical and translational science (CTS) must learn to effectively communicate their research ideas and findings to a range of audiences. As part of our science communication curriculum, we developed ORAL and WRITTEN science communication rubrics for our trainees to use across their courses and research activities. Methods/Study Population: The Tufts CTS Graduate Program is the training core of the Tufts CTSI and its associated pre- and post-doctoral T32 awards. Approximately 10 trainees with a range of backgrounds (e.g., physicians, medical students, master’s-level researchers, and basic science PhDs) matriculate each year. Faculty members and staff with expertise in science communication and pedagogy formed a committee to develop the rubrics. Because oral and written communication require different skills, we developed separate rubrics for each. We reviewed our current science communication curriculum, reviewed existing communication rubrics, and identified common mistakes students make. Following pilot testing by students and faculty pilot for one semester, we modified the rubrics based on informal feedback. Results/Anticipated Results: Both rubrics include a section to identify the target audience and specific items organized by theme. Oral rubric themes include presentation content, slides, verbal communication, nonverbal communication, and following instructions. Written rubric themes include overall, manuscript/proposal sections, and following instructions. The rubrics serve as feedback tools for faculty and students to evaluate work others produce and as self-evaluation tools. Feedback elements include a 4-point rating for each rubric item, open text feedback for each theme, and an open text holistic assessment. We now use the rubrics in our study design course, which features student presentations of planned research, and in our writing course. We anticipate collecting formal student feedback to further evaluate the rubrics. Discussion/Significance of Impact: Our rubrics can supplement existing science communication training and can be integrated into all CTS coursework and research activities. For future clinical and translational scientists to have the greatest impact, they must learn to effectively communicate findings to multiple audiences, ranging from experts in their field to the general public.
Smectites exchanged to various degrees with mono- or biprotonated 1,4-diazobicyclo(2,2,2)-octane (Dabco) have a porous structure in which the organic molecule acts as a “pillar.” Less Dabco2+ than Dabco1+ was necessary both to initiate and to complete expansion, whereas for both Dabco1+ and Dabco2+ the threshold for expansion increased with the charge density of the clay. Interstratification of 9.7-Å and 14.5-Å (Dabco1+) or 14.1-Å (Dabco2+) layers was observed before full expansion occurred.
Nitrogen sorption isotherms on partially exchanged Dabco1+- and Dabco2+-clays are of the BET II and Langmuir type respectively, whereas n-butane adsorbed according to BET type II for both cationic forms. The specific surface area was governed by the number of Dabcoz+ pillars, irrespective of the inorganic cation, and increased with Dabcoz+ content even beyond the composition where full expansion was reached and notwithstanding the increasing number of silicate layers in the c direction of the crystal units. This relationship is explained by an enhanced random interleaving of clay platelets in the stacking units containing Dabcoz+.
Although the relationship between visual attention, impulsivity, and cognitively restrained eating patterns has been established in previous research, less is known about the relationship of cognitive processes and disinhibited eating patterns in older adults. Research postulates that disinhibited eating behaviors may be associated with stress, limited emotional capacity, anxiety, and impulsivity. The current study investigated impulsivity as a potential mediator of the relationship between visual attention and disinhibited eating in older veterans.
Participants and Methods:
This study included 101 Veterans who were screened as part of a larger study assessing the impact of multi-modal activity-based interventions on brain health in older adulthood. The sample included largely White (76%), male (94%) Veterans aged 54 to 88 (M = 70.1, SD 8.9). The Three-Factor Eating Questionnaire was used to assess daily disinhibited eating patterns, and attentional impulsivity was assessed with the Barratt Impulsiveness Scale. Visual attention was evaluated using the Stroop Color Word Test (Color Trial). Mediation analyses were conducted using the SPSS PROCESS Macro. The outcome variable for analysis was disinhibited eating. The predictor variable was visual attention. The mediator variable was impulsivity. Body mass index (BMI) was included as a covariate as it was significantly associated with the predictor and outcome variables.
Results:
The indirect effect of visual attention on disinhibited eating was found to be statistically significant (effect = 0.06, 95%: 0.02, 0.12)
Conclusions:
Attentional impulsivity appears to mediate the relationship between visual attention and disinhibited eating behaviors. This finding extends the current literature about the relationship between visual attention, impulsivity, and other eating patterns (e.g., cognitively restrained eating) in older adults. Exploring this relationship helps us better understand the impact of eating habits through the aging process. Caregivers and older adults should be informed about the impact of increased impulsivity on disinhibited eating behaviors, especially in those with limited visual attention processes. Further understanding of the neurobiological impact of eating behaviors on cognition in older adulthood may assist in developing awareness about the importance of healthy eating patterns when considering brain health in the aging process.
Despite the increasing risks and complexity of disasters, education for Malaysian health care providers in this domain is limited. This study aims to assess scholarly publications by Malaysian scholars on Disaster Medicine (DM)-related topics.
Methodology:
An electronic search of five selected journals from 1991 through 2021 utilizing multiple keywords relevant to DM was conducted for review and analysis.
Results:
A total of 154 articles were included for analysis. The mean number of publications per year from 1991 through 2021 was 5.1 publications. Short reports were the most common research type (53.2%), followed by original research (32.4%) and case reports (12.3%). Mean citations among the included articles were 12.4 citations. Most author collaborations were within the same agency or institution, and there was no correlation between the type of collaboration and the number of citations (P = .942). While a few clusters of scholars could build a strong network across institutions, most research currently conducted in DM was within small, isolated clusters.
Conclusion:
Disaster Medicine in Malaysia is a growing medical subspecialty with a significant recent surge in research activity, likely due to the SARS-CoV-2/coronavirus disease 2019 (COVID-19) global pandemic. Since most publications in DM have been on infectious diseases, the need to expand DM-related research on other topics is essential.
Clinical and Translational Science Award (CTSA) Program hubs are well-positioned to advance dissemination and implementation (D&I) research and training capacity nationally, though little is known about what D&I research support and services CTSAs provide. To address this gap, the CTSA Dissemination, Implementation, and Knowledge Transfer Working Group conducted an environmental scan of CTSAs (2017–2018).
Methods:
Of 67 CTSA institutions, we contacted 43 that previously reported delivering D&I research services. D&I experts from these institutions were emailed a survey assessing D&I resources, services, training, and scientific projects. Responses were categorized and double-coded by study authors using a content analysis approach.
Results:
Thirty-five of the 43 D&I experts (81.4%) responded. Challenges to CTSAs in developing and supporting D&I science activities were related to inadequate D&I science workforce (45.7%) and lack of understanding of D&I science (25.7%). Services provided included consultation/mentoring programs (68%), pilot funding/grants (50%), and workshops/seminars/conferences (46%). Training and workforce development in D&I were frequently identified as future priorities. Recommendations included increase training to meet demand (68.6%), accessible D&I tools/resources (34.3%), greater visibility/awareness of D&I methods (34.3%), consultation services (22.9%), and expand D&I science workforce (22.9%).
Conclusions:
CTSAs have tremendous potential to support the advancement and impact of D&I science across the translational continuum. Despite the growing presence of D&I science in CTSAs, continued commitment and prioritization are needed from CTSA and institutional leadership to raise awareness of D&I science and its value, meet training demands, and develop necessary infrastructure for conducting D&I science.
This study aimed to explore effects of adjunctive minocycline treatment on inflammatory and neurogenesis markers in major depressive disorder (MDD). Serum samples were collected from a randomised, placebo-controlled 12-week clinical trial of minocycline (200 mg/day, added to treatment as usual) for adults (n = 71) experiencing MDD to determine changes in interleukin-6 (IL-6), lipopolysaccharide binding protein (LBP) and brain derived neurotrophic factor (BDNF). General Estimate Equation modelling explored moderation effects of baseline markers and exploratory analyses investigated associations between markers and clinical outcomes. There was no difference between adjunctive minocycline or placebo groups at baseline or week 12 in the levels of IL-6 (week 12; placebo 2.06 ± 1.35 pg/ml; minocycline 1.77 ± 0.79 pg/ml; p = 0.317), LBP (week 12; placebo 3.74 ± 0.95 µg/ml; minocycline 3.93 ± 1.33 µg/ml; p = 0.525) or BDNF (week 12; placebo 24.28 ± 6.69 ng/ml; minocycline 26.56 ± 5.45 ng/ml; p = 0.161). Higher IL-6 levels at baseline were a predictor of greater clinical improvement. Exploratory analyses suggested that the change in IL-6 levels were significantly associated with anxiety symptoms (HAMA; p = 0.021) and quality of life (Q-LES-Q-SF; p = 0.023) scale scores. No other clinical outcomes were shown to have this mediation effect, nor did the other markers (LBP or BDNF) moderate clinical outcomes. There were no overall changes in IL-6, LBP or BDNF following adjunctive minocycline treatment. Exploratory analyses suggest a potential role of IL-6 on mediating anxiety symptoms with MDD. Future trials may consider enrichment of recruitment by identifying several markers or a panel of factors to better represent an inflammatory phenotype in MDD with larger sample size.
Feed conversion ratio (FCR) in grow-finishing pigs is one of the most important determinants of pig farm profitability and production efficiency. In its simplest form, FCR represents the amount of feed used per unit weight gain of the pig. Yet, this approach entails various limitations hampering its practical applicability such as availability of accurate data and large variation in ways to adapt FCR values for different starting and end weight as well as mortality rates. Various stakeholders are using their own formulas to determine FCR creating a ‘definition nonconformity’ when comparing FCRs among farms. This study aimed to optimize the calculation of FCR through the use of participatory qualitative research. A multidisciplinary research group of 9 persons (animal scientists, veterinarians and agricultural economists) and a consulting group of 31 stakeholders (representing the Flemish primary sector, feed industry, pharma, genetic companies, large retailers, academia and policy institutions) were involved. The decision problem analysis started with a literature review, followed by 25 in-depth interviews and their analyses (NVivo 11™). This led to an additional literature review and the formation of focus (expert) groups that helped to formulate preliminary FCR formulas. Revision rounds between the research team and the stakeholders further fine-tuned the formulas with the final result being two distinct complimentary formulas that are fit for purpose. Both refer to carcass gain per kg feed intake (plain (CGF) and standardized (CGFstandardized)). The first formula (CGF), namely ${{{\it{number \, delivered \, pigs}} \times {\it{average \, warm \, carcass \, weight}} - {\it{number \, stocked \, piglets}} \times {\it{average \, piglet \, weight}} \times {\it{piglet \, carcass \, yield}}} \over {{\it{feed \, consumption}}}}$ is an objective representation of the animals’ performance. The second formula (CGFstandardized) was developed for farm benchmarking, incorporating a seven-step standardization process that corrects for mortality and ‘standardizes’ for a fixed (yet fictive) live weight trajectory of 25 to 115 kg. This second formula allows to compare farms (or batches of fattening pigs) with different weight trajectories and different mortality rates. A webtool was designed to ease this standardization process (https://varkensloket.be/tools/CGF).
In order to reduce antimicrobial use in pig production, the consequences of insufficient biosecurity and welfare problems need to be known. This study aimed to investigate associations between the number of antimicrobial treatments per fattening pig, and biosecurity, indicators for animal welfare as well as the prevalence of lesions at slaughter. The data used in this study were extracted from the pig health and welfare classification system (Sikava), which gathers data on medicine usage, meat inspection, animal welfare and the condition of farm buildings from over 95% of pig production in Finland. The data were registered during years from 2011 to 2013. Upon antimicrobial prescription, information on the number of fattening pigs treated and the main reason for treatment was recorded. In addition, at least 4 times per year, pig farms registered in Sikava were visited by the farm veterinarian who assessed, among other things, biosecurity and indicators for animal welfare (air quality, condition of facilities, cleanliness, enrichment and stocking density). Finally, data from slaughterhouse inspections were collected (number of carcasses with joint infection, abscesses, lung lesions, pleurisy and liver lesions). For analysis, these datasets were aggregated at the farm level to a quarter of a year. During the studied period, the mean number of antimicrobial treatments per fattening pig per 3 months was equal to 0.09. The main reasons for antimicrobial treatments were musculoskeletal diseases, tail biting and respiratory disorders (42, 33 and 12% of diagnoses, respectively). The meat inspection scoring indicated that as much as 14.7% of all pigs had pleurisy, 5.3% liver lesions and 4.1% abscesses. A standard zero-inflated negative binomial model was used to identify factors associated with the number of antimicrobial treatments per pig. The count of antimicrobial treatments per pig increased with the size of a farm. Regardless of prevalence of lesions, farms with poor drinking equipment, insufficient enrichment and a combination of poor condition of pens and high stocking density were associated with an increased number of antimicrobial treatments for musculoskeletal diseases per pig. Problems with stocking density and enrichment were associated with the number of antimicrobial treatments for tail biting, although these results depended on prevalence of joint infections. Problems with air quality and the combination of poor cleanliness and poor condition of facilities were associated with increased number of antimicrobial treatments due to respiratory diseases. This study suggests that by improving biosecurity and welfare at pig farms, antimicrobial use can be reduced.
Dissemination and implementation (D&I) science is not a formal element of the Clinical Translational Science Award (CTSA) Program, and D&I science activities across the CTSA Consortium are largely unknown.
Methods:
The CTSA Dissemination, Implementation, and Knowledge Translation Working Group surveyed CTSA leaders to explore D&I science-related activities, barriers, and needed supports, then conducted univariate and qualitative analyses of the data.
Results:
Out of 67 CTSA leaders, 55.2% responded. CTSAs reported directly funding D&I programs (54.1%), training (51.4%), and projects (59.5%). Indirect support (e.g., promoted by CTSA without direct funding) for D&I activities was higher – programs (70.3%), training (64.9%), and projects (54.1%). Top barriers included funding (39.4%), limited D&I science faculty (30.3%), and lack of D&I science understanding (27.3%). Respondents (63.4%) noted the importance of D&I training and recommended coordination of D&I activities across CTSAs hubs (33.3%).
Conclusion:
These findings should guide CTSA leadership in efforts to raise awareness and advance the role of D&I science in improving population health.
The COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) project is a large international collaborative effort to analyze individual-level phenotype data from twins in multiple cohorts from different environments. The main objective is to study factors that modify genetic and environmental variation of height, body mass index (BMI, kg/m2) and size at birth, and additionally to address other research questions such as long-term consequences of birth size. The project started in 2013 and is open to all twin projects in the world having height and weight measures on twins with information on zygosity. Thus far, 54 twin projects from 24 countries have provided individual-level data. The CODATwins database includes 489,981 twin individuals (228,635 complete twin pairs). Since many twin cohorts have collected longitudinal data, there is a total of 1,049,785 height and weight observations. For many cohorts, we also have information on birth weight and length, own smoking behavior and own or parental education. We found that the heritability estimates of height and BMI systematically changed from infancy to old age. Remarkably, only minor differences in the heritability estimates were found across cultural–geographic regions, measurement time and birth cohort for height and BMI. In addition to genetic epidemiological studies, we looked at associations of height and BMI with education, birth weight and smoking status. Within-family analyses examined differences within same-sex and opposite-sex dizygotic twins in birth size and later development. The CODATwins project demonstrates the feasibility and value of international collaboration to address gene-by-exposure interactions that require large sample sizes and address the effects of different exposures across time, geographical regions and socioeconomic status.
The efficient and effective movement of research into practice is acknowledged as crucial to improving population health and assuring return on investment in healthcare research. The National Center for Advancing Translational Science which sponsors Clinical and Translational Science Awards (CTSA) recognizes that dissemination and implementation (D&I) sciences have matured over the last 15 years and are central to its goals to shift academic health institutions to better align with this reality. In 2016, the CTSA Collaboration and Engagement Domain Task Force chartered a D&I Science Workgroup to explore the role of D&I sciences across the translational research spectrum. This special communication discusses the conceptual distinctions and purposes of dissemination, implementation, and translational sciences. We propose an integrated framework and provide real-world examples for articulating the role of D&I sciences within and across all of the translational research spectrum. The framework’s major proposition is that it situates D&I sciences as targeted “sub-sciences” of translational science to be used by CTSAs, and others, to identify and investigate coherent strategies for more routinely and proactively accelerating research translation. The framework highlights the importance of D&I thought leaders in extending D&I principles to all research stages.
Despite established clinical associations among major depression (MD), alcohol dependence (AD), and alcohol consumption (AC), the nature of the causal relationship between them is not completely understood. We leveraged genome-wide data from the Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared genetic mechanisms and causal relationships among MD, AD, and AC.
Methods
Linkage disequilibrium score regression and Mendelian randomization (MR) were performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls; AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals; AC-quantity: 307 098 individuals).
Results
Positive genetic correlation was observed between MD and AD (rgMD−AD = + 0.47, P = 6.6 × 10−10). AC-quantity showed positive genetic correlation with both AD (rgAD−AC quantity = + 0.75, P = 1.8 × 10−14) and MD (rgMD−AC quantity = + 0.14, P = 2.9 × 10−7), while there was negative correlation of AC-frequency with MD (rgMD−AC frequency = −0.17, P = 1.5 × 10−10) and a non-significant result with AD. MR analyses confirmed the presence of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28, P = 1.29 × 10−6). There was no evidence for reverse causation.
Conclusion
This study supports a causal role for genetic liability of MD on AD based on genetic datasets including thousands of individuals. Understanding mechanisms underlying MD-AD comorbidity addresses important public health concerns and has the potential to facilitate prevention and intervention efforts.
Background: Evidence suggests that cannabis use may be associated with suicidality in adolescence. Nevertheless, very few studies have assessed this association in low- and middle-income countries (LMICs). In this cross-sectional survey, we investigated the association of cannabis use and suicidal attempts in adolescents from 21 LMICs, adjusting for potential confounders.
Method: Data from the Global school-based Student Health Survey was analyzed in 86,254 adolescents from 21 countries [mean (SD) age = 13.7 (0.9) years; 49.0% girls]. Suicide attempts during past year and cannabis during past month and lifetime were assessed. Multivariable logistic regression analyses were conducted.
Results: The overall prevalence of past 30-day cannabis use was 2.8% and the age-sex adjusted prevalence varied from 0.5% (Laos) to 37.6% (Samoa), while the overall prevalence of lifetime cannabis use was 3.9% (range 0.5%–44.9%). The overall prevalence of suicide attempts during the past year was 10.5%. Following multivariable adjustment to potential confounding variables, past 30-day cannabis use was significantly associated with suicide attempts (OR = 2.03; 95% CI: 1.42–2.91). Lifetime cannabis use was also independently associated with suicide attempts (OR = 2.30; 95% CI: 1.74–3.04).
Conclusion: Our data indicate that cannabis use is associated with a greater likelihood for suicide attempts in adolescents living in LMICs. The causality of this association should be confirmed/refuted in prospective studies to further inform public health policies for suicide prevention in LMICs.
Background: Considerable evidence from twin and adoption studies indicates that genetic and shared environmental factors play a role in the initiation of smoking behavior. Although twin and adoption designs are powerful to detect genetic and environmental influences, they do not provide information on the processes of assortative mating and parent–offspring transmission and their contribution to the variability explained by genetic and/or environmental factors. Methods: We examined the role of genetic and environmental factors in individual differences for smoking initiation (SI) using an extended kinship design. This design allows the simultaneous testing of additive and non-additive genetic, shared and individual-specific environmental factors, as well as sex differences in the expression of genes and environment in the presence of assortative mating and combined genetic and cultural transmission, while also estimating the regression of the prevalence of SI on age. A dichotomous lifetime ‘ever’ smoking measure was obtained from twins and relatives in the ‘Virginia 30,000’ sample and the ‘Australian 25,000’. Results: Results demonstrate that both genetic and environmental factors play a significant role in the liability to SI. Major influences on individual differences appeared to be additive genetic and unique environmental effects, with smaller contributions from assortative mating, shared sibling environment, twin environment, cultural transmission, and resulting genotype-environment covariance. Age regression of the prevalence of SI was significant. The finding of negative cultural transmission without dominance led us to investigate more closely two possible mechanisms for the lower parent–offspring correlations compared to the sibling and DZ twin correlations in subsets of the data: (1) age × gene interaction, and (2) social homogamy. Neither of the mechanism provided a significantly better explanation of the data. Conclusions: This study showed significant heritability, partly due to assortment, and significant effects of primarily non-parental shared environment on liability to SI.
Evidence suggests that skin picking disorder (SPD) could be a prevalent condition associated with comorbidity and psychosocial dysfunction. However, just a few studies have assessed the prevalence and correlates of SPD in samples from low- and middle-income countries. In addition, the impact of SPD on quality of life (QoL) dimension after multivariable adjustment to potential confounders remains unclear.
Methods
Data were obtained from a Brazilian anonymous Web-based research platform. Participants provided sociodemographic data and completed the modified Skin Picking–Stanford questionnaire, the Hypomania Checklist (HCL-32), the Patient Health Questionnaire-9 (PHQ-9), the Fagerström Test for Nicotine Dependence, Alcohol Use Disorder Identification Test (AUDIT), Symptom Checklist-90-Revised inventory (SCL-90R), early trauma inventory self report–short form, and the World Health Organization quality of life abbreviated scale (WHOQOL-Bref). Associations were adjusted to potential confounders through multivariable models.
Results
For our survey, 7639 participants took part (71.3% females; age: 27.2±7.9 years). The prevalence of SPD was 3.4% (95% CI: 3.0–3.8%), with a female preponderance (P<0.001). In addition, SPD was associated with a positive screen for a major depressive episode, nicotine dependence, and alcohol dependence, as well as suicidal ideation. Physical and psychological QoL was significantly more impaired in participants with SPD compared to those without SPD, even after adjustment for comorbidity.
Conclusions
In this large sample, SPD was a prevalent condition associated with co-occurring depression, nicotine, and alcohol dependence. In addition, SPD was independently associated with impaired physical and psychological QoL. Public health efforts toward the early recognition and treatment of SPD are warranted.
Drinking alcohol is a normal behavior in many societies, and prior studies have demonstrated it has both genetic and environmental sources of variation. Using two very large samples of twins and their first-degree relatives (Australia ≈ 20,000 individuals from 8,019 families; Virginia ≈ 23,000 from 6,042 families), we examine whether there are differences: (1) in the genetic and environmental factors that influence four interrelated drinking behaviors (quantity, frequency, age of initiation, and number of drinks in the last week), (2) between the twin-only design and the extended twin design, and (3) the Australian and Virginia samples. We find that while drinking behaviors are interrelated, there are substantial differences in the genetic and environmental architectures across phenotypes. Specifically, drinking quantity, frequency, and number of drinks in the past week have large broad genetic variance components, and smaller but significant environmental variance components, while age of onset is driven exclusively by environmental factors. Further, the twin-only design and the extended twin design come to similar conclusions regarding broad-sense heritability and environmental transmission, but the extended twin models provide a more nuanced perspective. Finally, we find a high level of similarity between the Australian and Virginian samples, especially for the genetic factors. The observed differences, when present, tend to be at the environmental level. Implications for the extended twin model and future directions are discussed.
Whether monozygotic (MZ) and dizygotic (DZ) twins differ from each other in a variety of phenotypes is important for genetic twin modeling and for inferences made from twin studies in general. We analyzed whether there were differences in individual, maternal and paternal education between MZ and DZ twins in a large pooled dataset. Information was gathered on individual education for 218,362 adult twins from 27 twin cohorts (53% females; 39% MZ twins), and on maternal and paternal education for 147,315 and 143,056 twins respectively, from 28 twin cohorts (52% females; 38% MZ twins). Together, we had information on individual or parental education from 42 twin cohorts representing 19 countries. The original education classifications were transformed to education years and analyzed using linear regression models. Overall, MZ males had 0.26 (95% CI [0.21, 0.31]) years and MZ females 0.17 (95% CI [0.12, 0.21]) years longer education than DZ twins. The zygosity difference became smaller in more recent birth cohorts for both males and females. Parental education was somewhat longer for fathers of DZ twins in cohorts born in 1990–1999 (0.16 years, 95% CI [0.08, 0.25]) and 2000 or later (0.11 years, 95% CI [0.00, 0.22]), compared with fathers of MZ twins. The results show that the years of both individual and parental education are largely similar in MZ and DZ twins. We suggest that the socio-economic differences between MZ and DZ twins are so small that inferences based upon genetic modeling of twin data are not affected.
The ability to predict upper respiratory infections (URI), lower respiratory infections (LRI), and gastrointestinal tract infections (GI) in independently living older persons would greatly benefit population and individual health. Social network parameters have so far not been included in prediction models. Data were obtained from The Maastricht Study, a population-based cohort study (N = 3074, mean age (±s.d.) 59.8 ± 8.3, 48.8% women). We used multivariable logistic regression analysis to develop prediction models for self-reported symptomatic URI, LRI, and GI (past 2 months). We determined performance of the models by quantifying measures of discriminative ability and calibration. Overall, 953 individuals (31.0%) reported URI, 349 (11.4%) LRI, and 380 (12.4%) GI. The area under the curve was 64.7% (95% confidence interval (CI) 62.6–66.8%) for URI, 71.1% (95% CI 68.4–73.8) for LRI, and 64.2% (95% CI 61.3–67.1%) for GI. All models had good calibration (based on visual inspection of calibration plot, and Hosmer–Lemeshow goodness-of-fit test). Social network parameters were strong predictors for URI, LRI, and GI. Using social network parameters in prediction models for URI, LRI, and GI seems highly promising. Such parameters may be used as potential determinants that can be addressed in a practical intervention in older persons, or in a predictive tool to compute an individual's probability of infections.