We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vaccines have revolutionised the field of medicine, eradicating and controlling many diseases. Recent pandemic vaccine successes have highlighted the accelerated pace of vaccine development and deployment. Leveraging this momentum, attention has shifted to cancer vaccines and personalised cancer vaccines, aimed at targeting individual tumour-specific abnormalities. The UK, now regarded for its vaccine capabilities, is an ideal nation for pioneering cancer vaccine trials. This article convened experts to share insights and approaches to navigate the challenges of cancer vaccine development with personalised or precision cancer vaccines, as well as fixed vaccines. Emphasising partnership and proactive strategies, this article outlines the ambition to harness national and local system capabilities in the UK; to work in collaboration with potential pharmaceutic partners; and to seize the opportunity to deliver the pace for rapid advances in cancer vaccine technology.
Early life stress (ELS) and a Western diet (WD) promote mood and cardiovascular disorders, however, how these risks interact in disease pathogenesis is unclear. We assessed effects of ELS with or without a subsequent WD on behaviour, cardiometabolic risk factors, and cardiac function/ischaemic tolerance in male mice. Fifty-six new-born male C57BL/6J mice were randomly allocated to a control group (CON) undisturbed before weaning, or to maternal separation (3h/day) and early (postnatal day 17) weaning (MSEW). Mice consumed standard rodent chow (CON, n = 14; MSEW, n = 15) or WD chow (WD, n = 19; MSEW + WD, n = 19) from week 8 to 24. Fasted blood was sampled and open field test and elevated plus maze (EPM) tests undertaken at 7, 15, and 23 weeks of age, with hearts excised at 24 weeks for Langendorff perfusion (evaluating pre- and post-ischaemic function). MSEW alone transiently increased open field activity at 7 weeks; body weight and serum triglycerides at 4 and 7 weeks, respectively; and final blood glucose levels and insulin resistance at 23 weeks. WD increased insulin resistance and body weight gain, the latter potentiated by MSEW. MSEW + WD was anxiogenic, reducing EPM open arm activity vs. WD alone. Although MSEW had modest metabolic effects and did not influence cardiac function or ischaemic tolerance in lean mice, it exacerbated weight gain and anxiogenesis, and improved ischaemic tolerance in WD fed animals. MSEW-induced increases in body weight (obesity) in WD fed animals in the absence of changes in insulin resistance may have protected the hearts of these mice.
High cognitive activity possibly reduces the risk of cognitive decline and dementia.
Aims
To investigate associations between an individual's need to engage in cognitively stimulating activities (need for cognition, NFC) and structural brain damage and cognitive functioning in the Dutch general population with and without existing cognitive impairment.
Method
Cross-sectional data were used from the population-based cohort of the Maastricht Study. NFC was measured using the Need For Cognition Scale. Cognitive functioning was tested in three domains: verbal memory, information processing speed, and executive functioning and attention. Values 1.5 s.d. below the mean were defined as cognitive impairment. Standardised volumes of white matter hyperintensities (WMH), cerebrospinal fluid (CSF) and presence of cerebral small vessel disease (CSVD) were derived from 3T magnetic resonance imaging. Multiple linear and binary logistic regression analyses were used adjusted for demographic, somatic and lifestyle factors.
Results
Participants (n = 4209; mean age 59.06 years, s.d. = 8.58; 50.1% women) with higher NFC scores had higher overall cognition scores (B = 0.21, 95% CI 0.17–0.26, P < 0.001) and lower odds for CSVD (OR = 0.74, 95% CI 0.60–0.91, P = 0.005) and cognitive impairment (OR = 0.60, 95% CI 0.48–0.76, P < 0.001) after adjustment for demographic, somatic and lifestyle factors. The association between NFC score and cognitive functioning was similar for individuals with and without prevalent cognitive impairment. We found no significant association between NFC and WMH or CSF volumes.
Conclusions
A high need to engage in cognitively stimulating activities is associated with better cognitive functioning and less presence of CSVD and cognitive impairment. This suggests that, in middle-aged individuals, motivation to engage in cognitively stimulating activities may be an opportunity to improve brain health.
Although caring for dying patients and their family caregivers (FC) is integral to patient care, training in communication about approaching death is almost inexistent in medical and nursing curricula. Consequently, many health professionals have insufficient knowledge about conducting these conversations. In order to gain a broader insight into essential aspects of this communication from different perspectives, we conducted focus groups with key stakeholders.
Methods
Medical specialists, nurses, medical students, bereaved FC and patient representatives participated in five focus groups (n = 30). Following a focus group schedule, we elicited relevant aspects of communication about approaching death, associated emotions, and appropriate communication frameworks. We analyzed data thematically.
Results
Four main themes were central to conversations about approaching death: (1) embracing care within medical expertise, (2) preparing the conversation while remaining open to the unexpected, (3) recognizing and reflecting on own emotions and reactions, and (4) establishing a meaningful connection with others.
Significance of results
Communicating about approaching death with dying patients and their FC can be complex and challenging at a professional and personal level. With the recognition of the dying phase, a process is initiated for which health professionals need solid clinical knowledge about but also effective communication skills, constant self-reflection and self-care strategies. Comprehensive training and supervision while dealing with the challenges of communicating approaching death to dying patients and their FC are key, particularly for trainees, less experienced physicians and nurses. The essential components identified in this study can help health professionals to master these conversations.
Improving the quality and conduct of multi-center clinical trials is essential to the generation of generalizable knowledge about the safety and efficacy of healthcare treatments. Despite significant effort and expense, many clinical trials are unsuccessful. The National Center for Advancing Translational Science launched the Trial Innovation Network to address critical roadblocks in multi-center trials by leveraging existing infrastructure and developing operational innovations. We provide an overview of the roadblocks that led to opportunities for operational innovation, our work to develop, define, and map innovations across the network, and how we implemented and disseminated mature innovations.
One challenge for multisite clinical trials is ensuring that the conditions of an informative trial are incorporated into all aspects of trial planning and execution. The multicenter model can provide the potential for a more informative environment, but it can also place a trial at risk of becoming uninformative due to lack of rigor, quality control, or effective recruitment, resulting in premature discontinuation and/or non-publication. Key factors that support informativeness are having the right team and resources during study planning and implementation and adequate funding to support performance activities. This communication draws on the experience of the National Center for Advancing Translational Science (NCATS) Trial Innovation Network (TIN) to develop approaches for enhancing the informativeness of clinical trials. We distilled this information into three principles: (1) assemble a diverse team, (2) leverage existing processes and systems, and (3) carefully consider budgets and contracts. The TIN, comprised of NCATS, three Trial Innovation Centers, a Recruitment Innovation Center, and 60+ CTSA Program hubs, provides resources to investigators who are proposing multicenter collaborations. In addition to sharing principles that support the informativeness of clinical trials, we highlight TIN-developed resources relevant for multicenter trial initiation and conduct.
OBJECTIVES/GOALS: Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors that are driven by populations of cancer stem cells (CSCs). In this study, we perform an epigenetic-focused functional genomics screen in GBM organoids and identify WDR5 as an essential epigenetic regulator in the SOX2-enriched, therapy resistant cancer stem cell niche. METHODS/STUDY POPULATION: Despite their importance for tumor growth, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy resistant niche. Our niche-specific screens identified WDR5, an H3K4 histone methyltransferase responsible for activating specific gene expression, as indispensable for GBM CSC growth and survival. RESULTS/ANTICIPATED RESULTS: In GBM CSC models, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, required for stem cell maintenance and including the POU5F1(OCT4)::SOX2 motif. We incorporated a SOX2/OCT4 motif driven GFP reporter system into our CSC cell models and found that WDR5 inhibitor treatment resulted in dose-dependent silencing of stem cell reporter activity. Further, WDR5 inhibitor treatment altered the stem cell state, disrupting CSC in vitro growth and self-renewal as well as in vivo tumor growth. DISCUSSION/SIGNIFICANCE: Our results unveiled the role of WDR5 in maintaining the CSC state in GBM and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers. This conceptual and experimental framework can be applied to many cancers, and can unmask unique microenvironmental biology and rationally designed combination therapies.
Applying the difference-in-difference (DID) estimation procedure, this study quantifies the wheat blast (Magnaporthe oryzae pathotype Triticum) induced losses in wheat yield, quantity of wheat sold, consumed, or stored, as well as wheat grain value in Bangladesh in 2016 following a disease outbreak that affected over 15,000 ha. Estimates show that the blast-induced yield loss was 540 kg ha−1 on average for households in blast-affected districts. Estimated total wheat production loss was approximately 8,205 tons worth USD 2.1 million in during the 2016 outbreak. Based on these insights, we discuss the need for long-term assured investment and concerted research efforts in controlling transboundary diseases such as wheat blast, including the importance of weather forecast driven early warning systems and the dissemination of blast-resistant varieties.
Cognitive dysfunction and brain structural connectivity alterations have been observed in major depressive disorder (MDD). However, little is known about their interrelation. The present study follows a network approach to evaluate alterations in cognition-related brain structural networks.
Methods
Cognitive performance of n = 805 healthy and n = 679 acutely depressed or remitted individuals was assessed using 14 cognitive tests aggregated into cognitive factors. The structural connectome was reconstructed from structural and diffusion-weighted magnetic resonance imaging. Associations between global connectivity strength and cognitive factors were established using linear regressions. Network-based statistics were applied to identify subnetworks of connections underlying these global-level associations. In exploratory analyses, effects of depression were assessed by evaluating remission status-related group differences in subnetwork-specific connectivity. Partial correlations were employed to directly test the complete triad of cognitive factors, depressive symptom severity, and subnetwork-specific connectivity strength.
Results
All cognitive factors were associated with global connectivity strength. For each cognitive factor, network-based statistics identified a subnetwork of connections, revealing, for example, a subnetwork positively associated with processing speed. Within that subnetwork, acutely depressed patients showed significantly reduced connectivity strength compared to healthy controls. Moreover, connectivity strength in that subnetwork was associated to current depressive symptom severity independent of the previous disease course.
Conclusions
Our study is the first to identify cognition-related structural brain networks in MDD patients, thereby revealing associations between cognitive deficits, depressive symptoms, and reduced structural connectivity. This supports the hypothesis that structural connectome alterations may mediate the association of cognitive deficits and depression severity.
Binge eating disorder (BED) is a pernicious psychiatric disorder which is linked with broad medical and psychiatric morbidity, and obesity. While BED may be characterized by altered cortical morphometry, no evidence to date examined possible sex-differences in regional gray matter characteristics among those with BED. This is especially important to consider in children, where BED symptoms often emerge coincident with rapid gray matter maturation.
Methods
Pre-adolescent, 9–10-year old boys (N = 38) and girls (N = 33) with BED were extracted from the 3.0 baseline (Year 0) release of the Adolescent Brain Cognitive Development Study. We investigated sex differences in gray matter density (GMD) via voxel-based morphometry. Control sex differences were also assessed in age and body mass index and developmentally matched control children (boys N = 36; girls N = 38). Among children with BED, we additionally assessed the association between dorsolateral prefrontal (dlPFC) GMD and parent-reported behavioral approach and inhibition tendencies.
Results
Girls with BED uniquely demonstrate diffuse clusters of greater GMD (p < 0.05, Threshold Free Cluster Enhancement corrected) in the (i) left dlPFC (p = 0.003), (ii) bilateral dmPFC (p = 0.004), (iii) bilateral primary motor and somatosensory cortex (p = 0.0003) and (iv) bilateral precuneus (p = 0.007). Brain-behavioral associations suggest a unique negative correlation between GMD in the left dlPFC and behavioral approach tendencies among girls with BED.
Conclusions
Early-onset BED may be characterized by regional sex differences in terms of its underlying gray matter morphometry.
Behavioral features of binge eating disorder (BED) suggest abnormalities in reward and inhibitory control. Studies of adult populations suggest functional abnormalities in reward and inhibitory control networks. Despite behavioral markers often developing in children, the neurobiology of pediatric BED remains unstudied.
Methods
58 pre-adolescent children (aged 9–10-years) with BED (mBMI = 25.05; s.d. = 5.40) and 66 age, BMI and developmentally matched control children (mBMI = 25.78; s.d. = 0.33) were extracted from the 3.0 baseline (Year 0) release of the Adolescent Brain Cognitive Development (ABCD) Study. We investigated group differences in resting-state functional MRI functional connectivity (FC) within and between reward and inhibitory control networks. A seed-based approach was employed to assess nodes in the reward [orbitofrontal cortex (OFC), nucleus accumbens, amygdala] and inhibitory control [dorsolateral prefrontal cortex, anterior cingulate cortex (ACC)] networks via hypothesis-driven seed-to-seed analyses, and secondary seed-to-voxel analyses.
Results
Findings revealed reduced FC between the dlPFC and amygdala, and between the ACC and OFC in pre-adolescent children with BED, relative to controls. These findings indicating aberrant connectivity between nodes of inhibitory control and reward networks were corroborated by the whole-brain FC analyses.
Conclusions
Early-onset BED may be characterized by diffuse abnormalities in the functional synergy between reward and cognitive control networks, without perturbations within reward and inhibitory control networks, respectively. The decreased capacity to regulate a reward-driven pursuit of hedonic foods, which is characteristic of BED, may in part, rest on this dysconnectivity between reward and inhibitory control networks.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
We use three-dimensional (3-D) fully kinetic particle-in-cell simulations to study the occurrence of magnetic reconnection in a simulation of decaying turbulence created by anisotropic counter-propagating low-frequency Alfvén waves consistent with critical-balance theory. We observe the formation of small-scale current-density structures such as current filaments and current sheets as well as the formation of magnetic flux ropes as part of the turbulent cascade. The large magnetic structures present in the simulation domain retain the initial anisotropy while the small-scale structures produced by the turbulent cascade are less anisotropic. To quantify the occurrence of reconnection in our simulation domain, we develop a new set of indicators based on intensity thresholds to identify reconnection events in which both ions and electrons are heated and accelerated in 3-D particle-in-cell simulations. According to the application of these indicators, we identify the occurrence of reconnection events in the simulation domain and analyse one of these events in detail. The event is related to the reconnection of two flux ropes, and the associated ion and electron exhausts exhibit a complex 3-D structure. We study the profiles of plasma and magnetic-field fluctuations recorded along artificial-spacecraft trajectories passing near and through the reconnection region. Our results suggest the presence of particle heating and acceleration related to small-scale reconnection events within magnetic flux ropes produced by the anisotropic Alfvénic turbulent cascade in the solar wind. These events are related to current structures of the order of a few ion inertial lengths in size.
Between 2001 and 2017, the Royal Botanic Garden Edinburgh conducted training and research in Belize built around an annual two-week field course, part of the Edinburgh M.Sc. programme in Biodiversity and Taxonomy of Plants, focused on tropical plant identification, botanical-collecting and tropical fieldwork skills. This long-term collaboration in one country has led to additional benefits, most notably capacity building, acquisition of new country records, completion of M.Sc. thesis projects and publication of the findings in journal articles, and continued cooperation. Detailed summaries are provided for the specimens collected by students during the field course or return visits to Belize for M.Sc. thesis projects. Additionally, 15 species not recorded in the national checklist for Belize are reported. The information in this paper highlights the benefits of collaborations between institutions and countries for periods greater than the typical funding cycles of three to five years.
The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
Training for the clinical research workforce does not sufficiently prepare workers for today’s scientific complexity; deficiencies may be ameliorated with training. The Enhancing Clinical Research Professionals’ Training and Qualifications developed competency standards for principal investigators and clinical research coordinators.
Methods
Clinical and Translational Science Awards representatives refined competency statements. Working groups developed assessments, identified training, and highlighted gaps.
Results
Forty-eight competency statements in 8 domains were developed.
Conclusions
Training is primarily investigator focused with few programs for clinical research coordinators. Lack of training is felt in new technologies and data management. There are no standardized assessments of competence.
The translation of discoveries to drugs, devices, and behavioral interventions requires well-prepared study teams. Execution of clinical trials remains suboptimal due to varied quality in design, execution, analysis, and reporting. A critical impediment is inconsistent, or even absent, competency-based training for clinical trial personnel.
Methods
In 2014, the National Center for Advancing Translational Science (NCATS) funded the project, Enhancing Clinical Research Professionals’ Training and Qualifications (ECRPTQ), aimed at addressing this deficit. The goal was to ensure all personnel are competent to execute clinical trials. A phased structure was utilized.
Results
This paper focuses on training recommendations in Good Clinical Practice (GCP). Leveraging input from all Clinical and Translational Science Award hubs, the following was recommended to NCATS: all investigators and study coordinators executing a clinical trial should understand GCP principles and undergo training every 3 years, with the training method meeting the minimum criteria identified by the International Conference on Harmonisation GCP.
Conclusions
We anticipate that industry sponsors will acknowledge such training, eliminating redundant training requests. We proposed metrics to be tracked that required further study. A separate task force was composed to define recommendations for metrics to be reported to NCATS.
One case of hospital-acquired listeriosis was linked to milkshakes produced in a commercial-grade shake freezer machine. This machine was found to be contaminated with a strain of Listeria monocytogenes epidemiologically and molecularly linked to a contaminated pasteurized, dairy-based ice cream product at the same hospital a year earlier, despite repeated cleaning and sanitizing. Healthcare facilities should be aware of the potential for prolonged Listeria contamination of food service equipment. In addition, healthcare providers should consider counselling persons who have an increased risk for Listeria infections regarding foods that have caused Listeria infections. The prevalence of persistent Listeria contamination of commercial-grade milkshake machines in healthcare facilities and the risk associated with serving dairy-based ice cream products to hospitalized patients at increased risk for invasive L. monocytogenes infections should be further evaluated.
An efficient and robust method to measure vitamin D (25-hydroxy vitamin D3 (25(OH)D3) and 25-hydroxy vitamin D2 in dried blood spots (DBS) has been developed and applied in the pan-European multi-centre, internet-based, personalised nutrition intervention study Food4Me. The method includes calibration with blood containing endogenous 25(OH)D3, spotted as DBS and corrected for haematocrit content. The methodology was validated following international standards. The performance characteristics did not reach those of the current gold standard liquid chromatography-MS/MS in plasma for all parameters, but were found to be very suitable for status-level determination under field conditions. DBS sample quality was very high, and 3778 measurements of 25(OH)D3 were obtained from 1465 participants. The study centre and the season within the study centre were very good predictors of 25(OH)D3 levels (P<0·001 for each case). Seasonal effects were modelled by fitting a sine function with a minimum 25(OH)D3 level on 20 January and a maximum on 21 July. The seasonal amplitude varied from centre to centre. The largest difference between winter and summer levels was found in Germany and the smallest in Poland. The model was cross-validated to determine the consistency of the predictions and the performance of the DBS method. The Pearson’s correlation between the measured values and the predicted values was r 0·65, and the sd of their differences was 21·2 nmol/l. This includes the analytical variation and the biological variation within subjects. Overall, DBS obtained by unsupervised sampling of the participants at home was a viable methodology for obtaining vitamin D status information in a large nutritional study.