We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Exposure to adversity during the perinatal period has been associated with cognitive difficulties in children. Given the role of the nucleus accumbens (NAcc) in attention and impulsivity, we examined whether NAcc volume at age six mediates the relations between pre- and postnatal adversity and subsequent attention problems in offspring. 306 pregnant women were recruited as part of the Growing Up in Singapore Towards Healthy Outcomes Study. Psychosocial stress was assessed during pregnancy and across the first 5 years postpartum. At six years of age, children underwent structural MRI and, at age seven years, mothers reported on their children’s attention problems. Separate factor analyses conducted on measures of pre- and postnatal adversity each yielded two latent factors: maternal mental health and socioeconomic status. Both pre- and postnatal maternal mental health predicted children’s attention difficulties. Further, NAcc volume mediated the relation between prenatal, but not postnatal, maternal mental health and children’s attention problems. These findings suggest that the NAcc is particularly vulnerable to prenatal maternal mental health challenges and contributes to offspring attention problems. Characterizing the temporal sensitivity of neurobiological structures to adversity will help to elucidate mechanisms linking environmental exposures and behavior, facilitating the development of neuroscience-informed interventions for childhood difficulties.
While the cross-sectional relationship between internet gaming disorder (IGD) and depression is well-established, whether IGD predicts future depression remains debated, and the underlying mechanisms are not fully understood. This large-scale, three-wave longitudinal study aimed to clarify the predictive role of IGD in depression and explore the mediating effects of resilience and sleep distress.
Methods
A cohort of 41,215 middle school students from Zigong City was assessed at three time points: November 2021 (T1), November 2022 (T2) and November 2023 (T3). IGD, depression, sleep distress and resilience were measured using standardized questionnaires. Multiple logistic regression was used to examine the associations between baseline IGD and both concurrent and subsequent depression. Mediation analyses were conducted with T1 IGD as the predictor, T2 sleep distress and resilience as serial mediators and T3 depression as the outcome. To test the robustness of the findings, a series of sensitivity analyses were performed. Additionally, sex differences in the mediation pathways were explored.
Results
(1) IGD was independently associated with depression at baseline (T1: adjusted odds ratio [AOR] = 4.76, 95% confidence interval [CI]: 3.79–5.98, p < 0.001), 1 year later (T2: AOR = 1.42, 95% CI: 1.16–1.74, p < 0.001) and 2 years later (T3: AOR = 1.24, 95% CI: 1.01–1.53, p = 0.042); (2) A serial multiple mediation effect of sleep distress and resilience was identified in the relationship between IGD and depression. The mediation ratio was 60.7% in the unadjusted model and 33.3% in the fully adjusted model, accounting for baseline depression, sleep distress, resilience and other covariates. The robustness of our findings was supported by various sensitivity analyses; and (3) Sex differences were observed in the mediating roles of sleep distress and resilience, with the mediation ratio being higher in boys compared to girls.
Conclusions
IGD is a significant predictor of depression in adolescents, with resilience and sleep distress serving as key mediators. Early identification and targeted interventions for IGD may help prevent depression. Intervention strategies should prioritize enhancing resilience and improving sleep quality, particularly among boys at risk.
During the investigation of parasitic pathogens of Mytilus coruscus, infection of a Perkinsus-like protozoan parasite was detected by alternative Ray's Fluid Thioglycolate Medium (ARFTM). The diameter of hypnospores or prezoosporangia was 8–27 (15.6 ± 4.0, n = 111) μm. The prevalence of the Perkinsus-like species in M. coruscus was 25 and 12.5% using ARFTM and PCR, respectively. The ITS1-5.8S-ITS2 fragments amplified by PCR assay had 100% homology to that of P. beihaiensis, suggesting that the protozoan parasite was P. beihaisensis and M. coruscus was its new host in East China Sea (ECS). Histological analysis showed the presence of trophozoites of P. beihaiensis in gill, mantle and visceral mass, and the schizonts only found in visceral mass. Perkinsus beihaiensis infection led to inflammatory reaction of hemocyte and the destruction of digestive tubules in visceral mass, which had negative effect on health of the farmed M. coruscus and it deserves more attention.
Marine litter poses a complex challenge in Indonesia, necessitating a well-informed and coordinated strategy for effective mitigation. This study investigates the seasonality of plastic concentrations around Sulawesi Island in central Indonesia during monsoon-driven wet and dry seasons. By using open data and methodologies including the HYCOM and Parcels models, we simulated the dispersal of plastic waste over 3 months during both the southwest and northeast monsoons. Our research extended beyond data analysis, as we actively engaged with local communities, researchers and policymakers through a range of outreach initiatives, including the development of a web application to visualize model results. Our findings underscore the substantial influence of monsoon-driven currents on surface plastic concentrations, highlighting the seasonal variation in the risk to different regional seas. This study adds to the evidence provided by coarser resolution regional ocean modelling studies, emphasizing that seasonality is a key driver of plastic pollution within the Indonesian archipelago. Inclusive international collaboration and a community-oriented approach were integral to our project, and we recommend that future initiatives similarly engage researchers, local communities and decision-makers in marine litter modelling results. This study aims to support the application of model results in solutions to the marine litter problem.
Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene black was functionally characterised in an urban pest, the German cockroach, Blattella germanica. RNAi knockdown of B. germanica black (Bgblack) had no effect on survival, but did result in black pigmentation of the thoraxes, abdomens, heads, wings, legs, antennae, and cerci due to cuticular accumulation of melanin. Sex-specific variation in the pigmentation pattern was apparent, with females exhibiting darker coloration on the abdomen and thorax than males. Bgblack knockdown also resulted in wing deformation and negatively impacted the contact sex pheromone-based courtship behaviour of males. This study provides evidence for black function in multiple aspects of B. germanica biology and opens new avenues of exploration for novel pest control strategies.
From 2020 to December 2022, China implemented strict measures to contain the spread of severe acute respiratory syndrome coronavirus 2. However, despite these efforts, sustained outbreaks of the Omicron variants occurred in 2022. We extracted COVID-19 case numbers from May 2021 to October 2022 to identify outbreaks of the Delta and Omicron variants in all provinces of mainland China. We found that omicron outbreaks were more frequent (4.3 vs. 1.6 outbreaks per month) and longer-lasting (mean duration: 13 vs. 4 weeks per outbreak) than Delta outbreaks, resulting in a total of 865,100 cases, of which 85% were asymptomatic. Despite the average Government Response Index being 12% higher (95% confidence interval (CI): 9%, 15%) in Omicron outbreaks, the average daily effective reproduction number (Rt) was 0.45 higher (95% CI: 0.38, 0.52, p < 0.001) than in Delta outbreaks. Omicron outbreaks were suppressed in 32 days on average (95% CI: 26, 39), which was substantially longer than Delta outbreaks (14 days; 95% CI: 11, 19; p = 0.004). We concluded that control measures effective against Delta could not contain Omicron outbreaks in China. This highlights the need for continuous evaluation of new variants’ epidemiology to inform COVID-19 response decisions.
The COVID-19 pandemic created many challenges for in-patient care including patient isolation and limitations on hospital visitation. Although communication technology, such as video calling or texting, can reduce social isolation, there are challenges for implementation, particularly for older adults.
Objective/Methods
This study used a mixed methodology to understand the challenges faced by in-patients and to explore the perspectives of patients, family members, and health care providers (HCPs) regarding the use of communication technology. Surveys and focus groups were used.
Findings
Patients who had access to communication technology perceived the COVID-19 pandemic to have more adverse impact on their well-beings but less on hospitalization outcomes, compared to those without. Most HCPs perceived that technology could improve programs offered, connectedness of patients to others, and access to transitions of care supports. Focus groups highlighted challenges with technology infrastructure in hospitals.
Discussion
Our study findings may assist efforts in appropriately adopting communication technology to improve the quality of in-patient and transition care.
Screen time in infancy is linked to changes in social-emotional development but the pathway underlying this association remains unknown. We aim to provide mechanistic insights into this association using brain network topology and to examine the potential role of parent–child reading in mitigating the effects of screen time.
Methods
We examined the association of screen time on brain network topology using linear regression analysis and tested if the network topology mediated the association between screen time and later socio-emotional competence. Lastly, we tested if parent–child reading time was a moderator of the link between screen time and brain network topology.
Results
Infant screen time was significantly associated with the emotion processing-cognitive control network integration (p = 0.005). This network integration also significantly mediated the association between screen time and both measures of socio-emotional competence (BRIEF-2 Emotion Regulation Index, p = 0.04; SEARS total score, p = 0.04). Parent–child reading time significantly moderated the association between screen time and emotion processing-cognitive control network integration (β = −0.640, p = 0.005).
Conclusion
Our study identified emotion processing-cognitive control network integration as a plausible biological pathway linking screen time in infancy and later socio-emotional competence. We also provided novel evidence for the role of parent–child reading in moderating the association between screen time and topological brain restructuring in early childhood.
A series of organoclays with monolayers, bilayers, pseudotrilayers, paraffin monolayers and paraffin bilayers were prepared from montmorillonite by ion exchange with hexadecyltrimethylammonium bromide (HDTMAB). The HDTMAB concentrations used for preparing the organoclays were 0.5, 0.7, 1.0, 1.5, 2.0 and 2.5 times the montmorillonite cation exchange capacity (CEC). The microstructural parameters, including the BET-N2 surface area, pore volume, pore size, and surfactant loading and distribution, were determined by X-ray diffraction, N2 adsorption-desorption and high-resolution thermogravimetric analysis (HRTG). The BET-N2 surface area decreased from 55 to 1 m2/g and the pore volume decreased from 0.11 to 0.01 cm3/g as surfactant loading was increased from Na-Mt to 2.5CEC-Mt. The average pore diameter increased from 6.8 to 16.3 nm as surfactant loading was increased. After modifying montmorillonite with HDTMAB, two basic organoclay models were proposed on the basis of HRTG results: (1) the surfactant mainly occupied the clay interlayer space (0.5CEC-Mt, 0.7CEC-Mt, 1.0CEC-Mt); and (2) both the clay interlayer space and external surface (1.5CEC-Mt, 2.0CEC-Mt, 2.5CEC-Mt) were modified by surfactant. In model 1, the sorption mechanism of p-nitrophenol to the organoclay at a relatively low concentration involved both surface adsorption and partitioning, whereas, in model 2 it mainly involved only partitioning. This study demonstrates that the distribution of adsorbed surfactant and the arrangement of adsorbed HDTMA+ within the clay interlayer space control the efficiency and mechanism of sorption by the organoclay rather than BET-N2 surface area, pore volume, and pore diameter.
Galaxy gas kinematics are sensitive to the physical processes that contribute to a galaxy’s evolution. It is expected that external processes will cause more significant kinematic disturbances in the outer regions, while internal processes will cause more disturbances for the inner regions. Using a subsample of 47 galaxies ($0.27<z<0.36$) from the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, we conduct a study into the source of kinematic disturbances by measuring the asymmetry present in the ionised gas line-of-sight velocity maps at the $0.5R_e$ (inner regions) and $1.5R_e$ (outer regions) elliptical annuli. By comparing the inner and outer kinematic asymmetries, we aim to better understand what physical processes are driving the asymmetries in galaxies. We find the local environment plays a role in kinematic disturbance, in agreement with other integral field spectroscopy studies of the local universe, with most asymmetric systems being in close proximity to a more massive neighbour. We do not find evidence suggesting that hosting an Active Galactic Nucleus contributes to asymmetry within the inner regions, with some caveats due to emission line modelling. In contrast to previous studies, we do not find evidence that processes leading to asymmetry also enhance star formation in MAGPI galaxies. Finally, we find a weak anti-correlation between stellar mass and asymmetry (i.e., high stellar mass galaxies are less asymmetric). We conclude by discussing possible sources driving the asymmetry in the ionised gas, such as disturbances being present in the colder gas phase (either molecular or atomic) prior to the gas being ionised, and non-axisymmetric features (e.g., a bar) being present in the galactic disk. Our results highlight the complex interplay between ionised gas kinematic disturbances and physical processes involved in galaxy evolution.
In recent years, there has been significant momentum in applying deep learning (DL) to machine health monitoring (MHM). It has been widely claimed that DL methodologies are superior to more traditional techniques in this area. This paper aims to investigate this claim by analysing a real-world dataset of helicopter sensor faults provided by Airbus. Specifically, we will address the problem of machine sensor health unsupervised classification. In a 2019 worldwide competition hosted by Airbus, Fujitsu Systems Europe (FSE) won first prize by achieving an F1-score of 93% using a DL model based on generative adversarial networks (GAN). In another comprehensive study, various modified and existing image encoding methods were compared for the convolutional auto-encoder (CAE) model. The best classification result was achieved using the scalogram as the image encoding method, with an F1-score of 91%. In this paper, we use these two studies as benchmarks to compare with basic statistical analysis methods and the one-class supporting vector machine (SVM). Our comparative study demonstrates that while DL-based techniques have great potential, they are not always superior to traditional methods. We therefore recommend that all future published studies of applying DL methods to MHM include appropriately selected traditional reference methods, wherever possible.
OBJECTIVES/GOALS: Motoric cognitive risk (MCR) is a pre-dementia syndrome characterized by slow gait and subjective cognitive complaints. In the Atherosclerosis Risk in Communities (ARIC) study, we aim to (1) identify plasma proteins and protein modules associated with MCR and (2) compare the proteomic signature of MCR to that of mild cognitive impairment (MCI). METHODS/STUDY POPULATION: Nondemented ARIC participants were classified by MCR status (yes/no) according to a memory questionnaire and 4-meter walk. MCI status (yes/no) was classified by expert diagnosis using standardized criteria. We measured 4,877 proteins in plasma collected at ARIC Visit 5 (late-life) and Visit 2 (midlife) utilizing the SomaScan4 proteomic assay. Multivariable logistic regression”adjusted for demographic variables, kidney function, cardiovascular risk factors, and APOE4 status”related each protein to MCR at late-life. An FDR corrected P RESULTS/ANTICIPATED RESULTS: Proteome-wide association study among 4076 ARIC participants (mean age=75; 58% women, 17% Black, 4% MCR+, 21% MCI+; MCR+ and MCI+ groups overlapped) at late-life identified 26 MCR-associated proteins involved in metabolism, vascular/visceral smooth muscle, and extracellular matrix organization. At an uncorrected P DISCUSSION/SIGNIFICANCE: This proteomic characterization of MCR identifies novel plasma proteins and networks, both distinct from and overlapping with those of MCI, thus highlighting the partially divergent mechanisms underlying these pre-dementia syndromes. These findings may be leveraged toward dementia prognostication and targeted therapeutic approaches.
The gibbons (family Hylobatidae) represent one of world’s most threatened group of taxa. In theory they are an attractive group for interdisciplinary research but are often unconsciously overlooked. We conducted a systematic review in Web of Science and Google Scholar between January 1900 and February 2020 using PRISMA guidelines and strict search criteria to investigate (1) the number of mixed-method biosocial studies published on gibbons; (2) focus species and countries; (3) social analytical approaches used; and (4) the success of this approach in elucidating conservation issues. Only 31 mixed-method biosocial studies have been published on gibbons, 56 per cent on Nomascus species but none on Symphalangus. China and Vietnam were the most popular study locations. Optimistically, 68 per cent of publications were led by gibbon-range country researchers, but only 48 per cent of studies represented international collaborations; 81 per cent of studies addressed a conservation-related topic, highlighting the potential efficacy of using this approach in primate conservation research. However, few studies provided details of data collection methods, methods of analysis and sample sizes, and only one study used an anthropological analytical approach. We therefore encourage further cross-disciplinary international collaborations to better our understanding of human–gibbon relations on a deeper, more contextual level.
Gibbons and siamangs (termed ‘gibbons’ hereafter) are members of the family Hylobatidae and are the smallest of the apes, distinguished by their coordinated duets, territorial songs, arm-swinging locomotion and small family group sizes. They are the most speciose of the apes with four extant genera (Hylobates, Hoolock, Symphalangus and Nomascus) distributed across East and Southeast Asia. Of the 20 species, 95 per cent are considered critically endangered or endangered according to the International Union for Conservation of Nature (IUCN) Red List of Threatened Species (Rawson et al., 2011; Fan and Bartlett, 2017; IUCN, 2021).